Publications by authors named "Ricardo R Da Silva"

Article Synopsis
  • - Untargeted metabolomics, often reliant on data-dependent acquisition (DDA), has limitations in fragmenting all detected ions and specificity, prompting the development of a dynamic procedure to enhance detection of biological signals.
  • - The study analyzed three species of actinomycetes using liquid chromatography and mass spectrometry, employing MZmine for preprocessing and a custom tool, RegFilter, for data processing.
  • - RegFilter improved ion detection by covering the whole chromatographic run and allowed for the annotation of biologically relevant candidates, thus serving as a valuable complement to DDA and enabling the creation of customized spectral libraries.
View Article and Find Full Text PDF

In response to the escalating demand for sustainable agricultural methodologies, the utilization of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as a viable eco-friendly alternative. Microbial volatiles exhibit rapid diffusion rates, facilitating prompt chemical interactions. Moreover, microorganisms possess the capacity to emit volatiles constitutively, as well as in response to biological interactions and environmental stimuli.

View Article and Find Full Text PDF

Motivation: Annotation of the mass signals is still the biggest bottleneck for the untargeted mass spectrometry analysis of complex mixtures. Molecular networks are being increasingly adopted by the mass spectrometry community as a tool to annotate large-scale experiments. We have previously shown that the process of propagating annotations from spectral library matches on molecular networks can be automated using Network Annotation Propagation (NAP).

View Article and Find Full Text PDF

The demand for robust microbial cell factories that produce valuable biomaterials while resisting stresses imposed by current bioprocesses is rapidly growing. is an emerging host that presents desirable features for bioproduction, since it can grow in a wide range of substrates and tolerate a variety of toxic compounds. To explore suitability for application as a cell factory in biorefineries, we sought to understand the transcriptional responses of this yeast when growing under experimental settings that simulated those used in biofuels-related industries.

View Article and Find Full Text PDF

Assessing volatile organic compounds (VOCs) as cancer signatures is one of the most promising techniques toward developing non-invasive, simple, and affordable diagnosis. Here, we have evaluated the feasibility of employing static headspace extraction (HS) followed by gas chromatography with flame ionization detector (GC-FID) as a screening tool to discriminate between cancer patients (head and neck-HNC,= 15; and gastrointestinal cancer-GIC,= 19) and healthy controls (= 37) on the basis of a non-target (fingerprinting) analysis of oral fluid and urine. We evaluated the discrimination considering a single bodily fluid and adopting the hybrid approach, in which the oral fluid and urinary VOCs profiles were combined through data fusion.

View Article and Find Full Text PDF

Background: Genome-scale metabolic reconstruction tools have been developed in the last decades. They have helped to reconstruct eukaryotic and prokaryotic metabolic models, which have contributed to fields, e.g.

View Article and Find Full Text PDF

The Tier 1 HHS/USDA Select Agent is a bacterial pathogen that is highly virulent when introduced into the respiratory tract and intrinsically resistant to many antibiotics. Transcriptomic- and proteomic-based methodologies have been used to investigate mechanisms of virulence employed by and , a convenient surrogate; however, analysis of the pathogen and host metabolomes during infection is lacking. Changes in the metabolites produced can be a result of altered gene expression and/or post-transcriptional processes.

View Article and Find Full Text PDF

Understanding the microbial and chemical diversities, as well as what affects these diversities, is important for modern manufacturing of traditional fermented foods. In this work, Chinese dark teas (CDTs) that are traditional microbial fermented beverages with relatively high sample diversity were collected. Microbial DNA amplicon sequencing and mass spectrometry-based untargeted metabolomics show that the CDT microbial β diversity, as well as the nonvolatile chemical α and β diversities, is determined by the primary impact factors of geography and manufacturing procedures, in particular, latitude and pile fermentation after blending.

View Article and Find Full Text PDF

The toolbox available for microbiologists to study interspecies interactions is rapidly growing, and with continuously more advanced instruments, we are able to expand our knowledge on establishment and function of microbial communities. However, unravelling molecular interspecies interactions in complex biological systems remains a challenge, and interactions are therefore often studied in simplified communities. Here we perform an in-depth characterization of an observed interspecies interaction between two co-isolated bacteria, and .

View Article and Find Full Text PDF

Enzymes related to sphingolipids metabolism has been suggested as altered in oral squamous cell carcinoma (OSCC). However, clinical relevance of diverse sphingolipids in OSCC is not fully known. Here, we evaluated sphingolipidomics in plasma and tumor tissues as a tool for diagnosis/prognosis in OSCC patients.

View Article and Find Full Text PDF

is a Brazilian folk phytomedicine from Cerrado's "campus rupestris". Its volatile organic compounds includes bisabolene-derivatives as major compounds. Herein we provide the chemical profiling of constitutive volatile sesquiterpenes from leaves, timeframe emissions surveys, and pollinators records.

View Article and Find Full Text PDF

Molecular networking has become a key method to visualize and annotate the chemical space in non-targeted mass spectrometry data. We present feature-based molecular networking (FBMN) as an analysis method in the Global Natural Products Social Molecular Networking (GNPS) infrastructure that builds on chromatographic feature detection and alignment tools. FBMN enables quantitative analysis and resolution of isomers, including from ion mobility spectrometry.

View Article and Find Full Text PDF

The complex is a group of closely related bacterial species with large genomes that infect immunocompromised individuals and those living with cystic fibrosis. Some of these species are found more frequently and cause more severe disease than others, yet metabolomic differences between these have not been described. Furthermore, our understanding of how these species respond to antibiotics is limited.

View Article and Find Full Text PDF

Alnus spp. (Betulaceae) have been used for treatments of hemorrhage, burn injuries, antipyretic fever, diarrhea, and alcoholism in traditional medicines. In this study, a digitized LC-MS/MS data analysis workflow was applied to provide an overview on chemical diversity of 15 Alnus extracts prepared from bark, twigs, leaves, and fruits of A.

View Article and Find Full Text PDF

To visualize the personalized distributions of pathogens and chemical environments, including microbial metabolites, pharmaceuticals, and their metabolic products, within and between human lungs afflicted with cystic fibrosis (CF), we generated three-dimensional (3D) microbiome and metabolome maps of six explanted lungs from three cystic fibrosis patients. These 3D spatial maps revealed that the chemical environments differ between patients and within the lungs of each patient. Although the microbial ecosystems of the patients were defined by the dominant pathogen, their chemical diversity was not.

View Article and Find Full Text PDF

In our daily lives, we consume foods that have been transported, stored, prepared, cooked, or otherwise processed by ourselves or others. Food storage and preparation have drastic effects on the chemical composition of foods. Untargeted mass spectrometry analysis of food samples has the potential to increase our chemical understanding of these processes by detecting a broad spectrum of chemicals.

View Article and Find Full Text PDF

The species Euphorbia pithyusa and Euphorbia cupanii are two closely related Mediterranean spurges for which their taxonomic relationships are still being debated. Herein, the diterpene ester content of E. cupanii was investigated using liquid chromatography coupled to tandem mass spectrometry.

View Article and Find Full Text PDF

In liquid chromatography-mass spectrometry (LC-MS) metabolomics, data matrices with up to thousands of variables for each ion peak are subjected to multivariate analysis (MVA) to assess the homogeneity between samples. The large dimensions of LC/MS datasets hinder the identification of the discriminant or the metabolic markers. In the present study, the molecular network (MN) approach and two in silico annotation tools, network annotation propagation (NAP) and the hierarchical chemical classification method, ClassyFire, were used to annotate the metabolites of three Zanthoxylum species, Z.

View Article and Find Full Text PDF

Drug monitoring is crucial for providing accurate and effective care; however, current methods (e.g., blood draws) are inconvenient and unpleasant.

View Article and Find Full Text PDF

Plants produce a myriad of specialized metabolites to overcome their sessile habit and combat biotic as well as abiotic stresses. Evolution has shaped the diversity of specialized metabolites, which then drives many other aspects of plant biodiversity. However, until recently, large-scale studies investigating the diversity of specialized metabolites in an evolutionary context have been limited by the impossibility of identifying chemical structures of hundreds to thousands of compounds in a time-feasible manner.

View Article and Find Full Text PDF

Polymers are a common component of chemical background which complicates data analysis and can impair interpretation. Undesired chemical background cannot always be addressed via pre-analytical methods, chromatography, or existing data processing methods. The Kendrick mass filter (KMF) is presented for the computational removal of undesired signals present in MS spectra.

View Article and Find Full Text PDF

The integration of LC-MS/MS molecular networking and in silico MS/MS fragmentation is an emerging method for dereplication of natural products. In the present study, a targeted isolation of natural products using a new in silico-based annotation tool named Network Annotation Propagation (NAP) is described. NAP improves accuracy of in silico fragmentation analyses by reranking candidate structures based on the network topology from MS/MS-based molecular networking.

View Article and Find Full Text PDF

The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available.

View Article and Find Full Text PDF

Our understanding of the spatial variation in the chemical and microbial makeup of an entire human organ remains limited, in part due to the size and heterogeneity of human organs and the complexity of the associated metabolome and microbiome. To address this challenge, we developed a workflow to enable the cartography of metabolomic and microbiome data onto a three-dimensional (3D) organ reconstruction built off radiological images. This enabled the direct visualization of the microbial and chemical makeup of a human lung from a cystic fibrosis patient.

View Article and Find Full Text PDF

Increasing appreciation of the gut microbiome's role in health motivates understanding the molecular composition of human feces. To analyze such complex samples, we developed a platform coupling targeted and untargeted metabolomics. The approach is facilitated through split flow from one UPLC, joint timing triggered by contact closure relays, and a script to retrieve the data.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session61sa37ckbgvgl9fqcib659stjokppn4o): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once