The functional restoration of a damaged cardiac tissue relies on a synchronized contractile capacity of exogenous and/or endogenous cardiomyocytes, which is challenging to achieve. Here, we explored the potential of the short glycopeptide diphenylalanine glucosamine-6-sulfate (FFGlcN6S) conjugated with an aromatic moiety, namely fluorenylmethoxycarbonyl (Fmoc), to enhance cardiac tissue regeneration. At physiological conditions, Fmoc-FFGlcN6S assembles into nanofibrous hydrated meshes, i.
View Article and Find Full Text PDFThe current treatments for wounds often fail to induce adequate healing, leaving wounds vulnerable to persistent infections and development of drug-resistant microbial biofilms. New natural-derived nanoparticles were studied to impair bacteria colonization and hinder the formation of biofilms in wounds. The nanoparticles were fabricated through polyelectrolyte complexation of chitosan (CS, polycation) and hyaluronic acid (HA, polyanion).
View Article and Find Full Text PDFA better understanding of the underlying pathomechanisms of diastolic dysfunction is crucial for the development of targeted therapeutic options with the aim to increase the patients' quality of life. In order to shed light on the processes involved, suitable models are required. Here, effects of endothelin-1 (ET-1) treatment on cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) were investigated.
View Article and Find Full Text PDFWe show distinct CH-π interactions and assembly pathways for the amphiphile -(fluorenylmethoxycarbonyl)-galactosamine and its epimer -(fluorenylmethoxycarbonyl)-glucosamine. These differences result in the formation of supramolecular nanofibrous systems with opposite chirality. Our results showcase the importance of the carbohydrates structural diversity for their specific biointeractions and the opportunity that their ample interactome offers for synthesis of versatile and tunable supramolecular (bio) materials.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most lethal and common malignant primary brain tumor in adults. An important feature that supports GBM aggressiveness is the unique composition of its extracellular matrix (ECM). Particularly, fibronectin plays an important role in cancer cell adhesion, differentiation, proliferation, and chemoresistance.
View Article and Find Full Text PDFThe broad differential diagnosis associated with progressive subacute encephalopathy can be intimidating, especially in a young, pregnant woman. In this case, a 24-year-old woman at 21 weeks of gestation presented with persistent, drug-resistant fronto-parietal headache, with subsequent progressive development of psychomotor lentification and inappropriate behavior. Physical examination was normal, as were routine laboratory parameters and CT findings, and these symptoms were initially interpreted in the context of chronic depression.
View Article and Find Full Text PDFSilica nanoparticles (SiNPs) are widely used in biomedical applications, such as cancer therapy/diagnosis or tissue engineering and regenerative medicine. Herein, we synthesized SiNPs and modified them with sulfonic acid groups (by organosilylation followed by oxidation) or a sulfated polysaccharide (i.e.
View Article and Find Full Text PDFUnlabelled: Previous studies have employed machine learning tools to classify films according to success to guide a reduction in the degree of uncertainty of film production. We revisited the literature to contribute to three relevant issues in classifying films according to economic success. First, we explored the differences between the results of the shortest or longest samples in terms of time to study possible changes in patterns of consumption mainly due to technological changes and between total and wide-released films.
View Article and Find Full Text PDFWe applied a bottom-up approach to develop biofunctional supramolecular hydrogels from an aromatic glycodipeptide. The self-assembly of the glycopeptide was induced by either temperature manipulation (heating-cooling cycle) or solvent (DMSO to water) switch. The sol-gel transition was salt-triggered in cell culture media and resulted in gels with the same chemical compositions but different mechanical properties.
View Article and Find Full Text PDFsp. nov. () is described and illustrated based on specimens collected from a reforestation area in southeastern Brazil.
View Article and Find Full Text PDFThe thymus is responsible for the selection and development of T cells, having an essential role in the establishment of adaptive immunity. Thymic epithelial cells (TECs) are key players in T cell development interacting with thymocytes in the thymic 3D environment. Feeder-layer cells have been frequently used as platforms for the successful establishment of TEC cultures.
View Article and Find Full Text PDFThe three-dimensional (3D) organization of cells affects their mobility, proliferation, and overall response to treatment. Spheroids, organoids, and microfluidic chips are used in cancer research to reproduce in vitro the complex and dynamic malignant microenvironment. Herein, single- and double-channel microfluidic devices are used to mimic the spatial organization of brain tumors and investigate the therapeutic efficacy of molecular and nano anti-cancer agents.
View Article and Find Full Text PDFOcean resources are a priceless repository of unique species and bioactive compounds with denouement properties that can be used in the fabrication of advanced biomaterials as new templates for supporting the cell culture envisaging tissue engineering approaches. The collagen of marine origin can be sustainably isolated from the underrated fish processing industry by-products, while silica and related materials can be found in the spicules of marine sponges and diatoms frustules. Aiming to address the potential of biomaterials composed from marine collagen and silica-based materials in the context of bone regeneration, four different 3D porous structure formulations (COL, COL:BG, COL:D.
View Article and Find Full Text PDFAlterations in the organization of the cytoskeleton precede the escape of adherent cells from the framework of cell-cell and cell-matrix interactions into suspension. With cytoskeletal dynamics being linked to cell mechanical properties, many studies elucidated this relationship under either native adherent or suspended conditions. In contrast, tethered cells that mimic the transition between both states have not been the focus of recent research.
View Article and Find Full Text PDFBackground: Hypertension is an important risk factor of cardiovascular (CV) disease. An early diagnosis of target organ damage could prevent major CV events. Electrocardiography (ECG) is a valuable clinical technique, with wide availability and high specificity, used in evaluation of hypertensive patients.
View Article and Find Full Text PDFClin Neurol Neurosurg
August 2022
Introduction: Ischemic stroke is a major cause of death and disability. Despite major advances in reperfusion therapies, most patients don´t benefit from these treatments as the time window for such interventions is limited. Therefore, other treatment options are desirable.
View Article and Find Full Text PDFDifferentiation of cardiac progenitor cells (CPC) into cardiomyocytes is a fundamental step in cardiogenesis, which is marked by changes in gene expression responsible for remodeling of the cytoskeleton and in altering the mechanical properties of cells. Here we have induced the differentiation of CPC derived from human pluripotent stem cells into immature cardiomyocytes (iCM) which we compare with more differentiated cardiomyocytes (mCM). Using atomic force microscopy and real-time deformability cytometry, we describe the mechanodynamic changes that occur during the differentiation process and link our findings to protein expression data of cytoskeletal proteins.
View Article and Find Full Text PDFTitin is a multifunctional filamentous protein anchored in the M-band, a hexagonally organized supramolecular lattice in the middle of the muscle sarcomere. Functionally, the M-band is a framework that cross-links myosin thick filaments, organizes associated proteins, and maintains sarcomeric symmetry via its structural and putative mechanical properties. Part of the M-band appears at the C-terminal end of isolated titin molecules in the form of a globular head, named here the "M-complex", which also serves as the point of head-to-head attachment of titin.
View Article and Find Full Text PDFTissue engineered (TE) substitutes of clinically relevant sizes need an adequate vascular system to ensure function and proper tissue integration after implantation. However, the predictable vascularization of TE substitutes is yet to be achieved. Molecular weight variations in hyaluronic acid (HA) have been pointed to trigger angiogenesis.
View Article and Find Full Text PDFThe self-assembly of amyloid-β (Aβ) generates cytotoxic oligomers linked to the onset and progression of Alzheimer's disease (AD). As many fundamental molecular pathways that control Aβ aggregation are yet to be unraveled, an important strategy to control Aβ cytotoxicity is the development of bioactive synthetic nanotools capable of interacting with the heterogeneous ensemble of Aβ species and remodel them into noncytotoxic forms. Herein, the synthesis of nanosized, functional gallic acid (Ga)-based dendrimers with a precise number of Ga at their surface is described.
View Article and Find Full Text PDFWe report on the supramolecular self-assembly of tripeptides and their -glycosylated analogues, in which the carbohydrate moiety is coupled to a central serine or threonine flanked by phenylalanine residues. The substitution of serine with threonine introduces differential side-chain interactions, which results in the formation of aggregates with different morphology. -glycosylation decreases the aggregation propensity because of rebalancing of the π interactions.
View Article and Find Full Text PDF