Publications by authors named "Ricardo P Llanos"

Intracellular peptides were shown to derive from proteasomal degradation of proteins from mammalian and yeast cells, being suggested to play distinctive roles both inside and outside these cells. Here, the role of intracellular peptides previously identified from skeletal muscle and adipose tissues of C57BL6/N wild type (WT) and neurolysin knockout mice were investigated. In differentiated C2C12 mouse skeletal muscle cells, some of these intracellular peptides like insulin activated the expression of several genes related to muscle contraction and gluconeogenesis.

View Article and Find Full Text PDF

Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1 exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN).

View Article and Find Full Text PDF

Chromatin associated proteins are key regulators of many important processes in the cell. Trypanosoma cruzi, a protozoa flagellate that causes Chagas disease, alternates between replicative and nonreplicative forms accompanied by a shift on global transcription levels and by changes in its chromatin architecture. Here, we investigated the T.

View Article and Find Full Text PDF

Unlabelled: Hundreds of intracellular peptides that are neither antigens nor neuropeptides are present in mammalian cells and tissues. These peptides correspond to fragments of cytosolic, nuclear or mitochondrial proteins. Proteasome inhibition affects the levels of the intracellular peptides in human cell lines.

View Article and Find Full Text PDF