Publications by authors named "Ricardo Leon-Letelier"

Introduction: Glycosylation, the process of glycan synthesis and attachment to target molecules, is a crucial and common post-translational modification (PTM) in mammalian cells. It affects the protein's hydrophilicity, charge, solubility, structure, localization, function, and protection from proteolysis. Aberrant glycosylation in proteins can reveal new detection and therapeutic Glyco-biomarkers, which help to improve accurate early diagnosis and personalized treatment.

View Article and Find Full Text PDF

Background: Increasing evidence implicates microbiome involvement in the development and progression of pancreatic ductal adenocarcinoma (PDAC). Studies suggest that reflux of gut or oral microbiota can lead to colonization in the pancreas, resulting in dysbiosis that culminates in release of microbial toxins and metabolites that potentiate an inflammatory response and increase susceptibility to PDAC. Moreover, microbe-derived metabolites can exert direct effector functions on precursors and cancer cells, as well as other cell types, to either promote or attenuate tumor development and modulate treatment response.

View Article and Find Full Text PDF

The kynurenine pathway (KP) and associated catabolites play key roles in promoting tumor progression and modulating the host anti-tumor immune response. To date, considerable focus has been on the role of indoleamine 2,3-dioxygenase 1 (IDO1) and its catabolite, kynurenine (Kyn). However, increasing evidence has demonstrated that downstream KP enzymes and their associated metabolite products can also elicit tumor-microenvironment immune suppression.

View Article and Find Full Text PDF

Background: The development of diverse spatial profiling technologies has provided an unprecedented insight into molecular mechanisms driving cancer pathogenesis. Here, we conducted the first integrated cross-species assessment of spatial transcriptomics and spatial metabolomics alterations associated with progression of intraductal papillary mucinous neoplasms (IPMN), cystic precursors of pancreatic ductal adenocarcinoma (PDAC).

Methods: Matrix Assisted Laster Desorption/Ionization (MALDI) mass spectrometry (MS)-based spatial imaging and Visium spatial transcriptomics (ST) (10X Genomics) was performed on human resected IPMN tissues (N= 23) as well as pancreata from a mutant mouse model of IPMN.

View Article and Find Full Text PDF

The nuclear factor erythroid 2-related factor 2 (NRF2) pathway is frequently activated in various cancer types. Aberrant activation of NRF2 in cancer is attributed to gain-of-function mutations in the NRF2-encoding gene or a loss of function of its suppressor, Kelch-like ECH-associated protein 1 (). NRF2 activation exerts pro-tumoral effects in part by altering cancer cell metabolism.

View Article and Find Full Text PDF

c-MYC and its paralogues MYCN and MYCL are among the most frequently amplified and/or overexpressed oncoproteins in ovarian cancer. c-MYC plays a key role in promoting ovarian cancer initiation and progression. The polyamine pathway is a bona fide target of c-MYC signaling, and polyamine metabolism is strongly intertwined with ovarian malignancy.

View Article and Find Full Text PDF

Although harnessing the immune system for cancer therapy has shown success, response to immunotherapy has been limited. The immunopeptidome of cancer cells presents an opportunity to discover novel antigens for immunotherapy applications. These neoantigens bind to MHC class I and class II molecules.

View Article and Find Full Text PDF
Article Synopsis
  • HPV E5 is an oncoprotein present in premalignant lesions, making it a key target for cervical cancer vaccines.
  • Researchers tested a targeted approach using a conjugate (anti-DEC-205:16E5) to increase immune response against HPV16-induced tumors in mice.
  • The study found that this targeting led to significant tumor control in 70% of treated mice, while control groups showed no survival, indicating potential for early-stage HPV cancer treatment with this method.
View Article and Find Full Text PDF

Immunotherapy has improved the clinical response in melanoma patients, although a relevant percentage of patients still cannot be salvaged. The search for the immune populations that provide the best tumor control and that can be coaxed by immunotherapy strategies is a hot topic in cancer research nowadays. Tumor-infiltrating TCF-1 progenitor exhausted CD8 T cells seem to grant the best melanoma prognosis and also efficiently respond to anti-PD-1 immunotherapy, giving rise to a TIM-3 terminally exhausted population with heightened effector activity.

View Article and Find Full Text PDF

Melanoma is the deadliest form of skin cancer. Cutaneous melanomas usually originate from exposure to the mutagenic effects of ultraviolet radiation, and as such they exhibit the highest rate of somatic mutations than any other human cancer, and an extensive expression of neoantigens concurrently with a dense infiltrate of immune cells. The coexistence of high immunogenicity and high immune cell infiltration may sound contradictory for cancers carrying a gloomy outcome.

View Article and Find Full Text PDF