Enzymatically isolated pancreatic islets are the most commonly used testbeds for diabetes research. Recently, precision-cut living slices of human pancreas are emerging as an exciting alternative because they maintain the complex architecture of the endocrine and exocrine tissues, and do not suffer from the mechanical and chemical stress of enzymatic isolation. We report a fluidic pancreatic SliceChip platform with dynamic environmental controls that generates a warm, oxygenated, and bubble-free fluidic pathway across singular immobilized slices with continuous deliver of fresh media and the ability to perform repeat serial perfusion assessments.
View Article and Find Full Text PDFTrends Endocrinol Metab
February 2024
Shortly after diagnosis of type 1 diabetes mellitus (T1DM) and initiation of insulin therapy, many patients experience a transient partial remission (PR) phase, also known as the honeymoon phase. This phase presents a potential therapeutic opportunity due to its association with immunoregulatory and β cell-protective mechanisms. However, the lack of biomarkers makes its characterization difficult.
View Article and Find Full Text PDFHuman pancreatic plasticity is implied from multiple single-cell RNA sequencing (scRNA-seq) studies. However, these have been invariably based on static datasets from which fate trajectories can only be inferred using pseudotemporal estimations. Furthermore, the analysis of isolated islets has resulted in a drastic underrepresentation of other cell types, hindering our ability to interrogate exocrine-endocrine interactions.
View Article and Find Full Text PDFThe application of single-cell analytic techniques to the study of stem/progenitor cell niches supports the emerging view that pancreatic cell lineages are in a state of flux between differentiation stages. For all their value, however, such analyses merely offer a snapshot of the cellular palette of the tissue at any given time point. Conclusions about potential developmental/regeneration paths are solely based on bioinformatics inferences.
View Article and Find Full Text PDFBackground: The Mediterranean diet (MD) could be involved in the regulation of different miRNAs related to metabolic syndrome (MS).
Methods: We analyzed the serum level of mir-let7a-5p, mir-21, mir-590, mir-107 and mir-192 in patients with morbid obesity and its association with the MD and MS.
Results: There is an association between the adherence to MD and higher serum levels of mir-590.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe culture of live pancreatic tissue slices is a powerful tool for the interrogation of physiology and pathology in an in vitro setting that retains near-intact cytoarchitecture. However, current culture conditions for human pancreatic slices (HPSs) have only been tested for short-term applications, which are not permissive for the long-term, longitudinal study of pancreatic endocrine regeneration. Using a culture system designed to mimic the physiological oxygenation of the pancreas, we demonstrate high viability and preserved endocrine and exocrine function in HPS for at least 10 days after sectioning.
View Article and Find Full Text PDFWe have described multipotent progenitor-like cells within the major pancreatic ducts (MPDs) of the human pancreas. They express PDX1, its surrogate surface marker P2RY1, and the bone morphogenetic protein (BMP) receptor 1A (BMPR1A)/activin-like kinase 3 (ALK3), but not carbonic anhydrase II (CAII). Here we report the single-cell RNA sequencing (scRNA-seq) of ALK3-sorted ductal cells, a fraction that harbors BMP-responsive progenitor-like cells.
View Article and Find Full Text PDFIn type 1 diabetes (T1D), autoimmune destruction of pancreatic β cells leads to insulin deficiency and loss of glycemic control. However, knowledge about human pancreas pathophysiology in T1D remains incomplete. To address this limitation, we established a pancreas tissue slice platform of donor organs with and without diabetes, facilitating the first live cell studies of human pancreas in T1D pathogenesis to our knowledge.
View Article and Find Full Text PDFCellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation, produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action, an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2 (T2D) diabetes, as well as their complications, has been well established. However, there is a lack of understanding about genome-driven responses to ROS-mediated cellular stress.
View Article and Find Full Text PDFThe transplantation of human embryonic stem cell (hESC)-derived insulin-producing β cells for the treatment of diabetes is finally approaching the clinical stage. However, even with state-of-the-art differentiation protocols, a significant percentage of undefined non-endocrine cell types are still generated. Most importantly, there is the potential for carry-over of non-differentiated cell types that may produce teratomas.
View Article and Find Full Text PDFAdult pancreatic regeneration is one of the most contentious topics in modern biology. The long-held view that the islets of Langerhans can be replenished throughout adult life through the reactivation of ductal progenitor cells has been replaced over the past decade by the now prevailing notion that regeneration does not involve progenitors and occurs only through the duplication of pre-existing mature cells. Here we dissect the limitations of lineage tracing (LT) to draw categorical conclusions about pancreatic regeneration, especially in view of emerging evidence that traditional lineages are less homogeneous and cell fates more dynamic than previously thought.
View Article and Find Full Text PDFTreatment of human pancreatic non-endocrine tissue with Bone Morphogenetic Protein 7 (BMP-7) leads to the formation of glucose-responsive β-like cells. Here, we show that BMP-7 acts on extrainsular cells expressing PDX1 and the BMP receptor activin-like kinase 3 (ALK3/BMPR1A). In vitro lineage tracing indicates that ALK3 cell populations are multipotent.
View Article and Find Full Text PDFAims/hypothesis: MicroRNAs (miRNAs) are key regulators of gene expression and novel biomarkers for many diseases. We investigated the hypothesis that serum levels of some miRNAs would be associated with islet autoimmunity and/or progression to type 1 diabetes.
Methods: We measured levels of 93 miRNAs most commonly detected in serum.
Islet transplantation is an effective cell therapy for type 1 diabetes (T1D) but its clinical application is limited due to shortage of donors. After a decade-long period of exploration of potential alternative cell sources, the field has only recently zeroed in on two of them as the most likely to replace islets. These are pluripotent stem cells (PSCs) (through directed differentiation) and pancreatic non-endocrine cells (through directed differentiation or reprogramming).
View Article and Find Full Text PDFThe exocrine pancreas can give rise to endocrine insulin-producing cells upon ectopic expression of key transcription factors. However, the need for genetic manipulation remains a translational hurdle for diabetes therapy. Here we report the conversion of adult human nonendocrine pancreatic tissue into endocrine cell types by exposure to bone morphogenetic protein 7.
View Article and Find Full Text PDFThe ultimate goal of diabetes therapy is the restoration of physiologic metabolic control. For type 1 diabetes, research efforts are focused on the prevention or early intervention to halt the autoimmune process and preserve β cell function. Replacement of pancreatic β cells via islet transplantation reestablishes physiologic β cell function in patients with diabetes.
View Article and Find Full Text PDFmicroRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways.
View Article and Find Full Text PDFCold Spring Harb Protoc
September 2012
Our knowledge of organ ontogeny is largely based on loss-of-function (knockout) or gain-of-function (transgenesis) approaches. However, developmental modulators such as proteins, mRNAs, microRNAs(miRNAs), small interfering RNAs, and other small molecules may complement the above DNA-modifying technologies in a much more direct way. Unfortunately, their use is often limited by the ability of these compounds to cross the placenta and reach physiologically relevant concentrations when administered systemically to the mother.
View Article and Find Full Text PDFNonspecific inflammation in the transplant microenvironment results in β-cell dysfunction and death influencing negatively graft outcome. MicroRNA (miRNA) expression and gene target regulation in transplanted islets are not yet well characterized. We evaluated the impact of inflammation on miRNA expression in transplanted rat islets.
View Article and Find Full Text PDFIschemic preconditioning (IPC) confers tissue resistance to subsequent ischemia in several organs. The protective effects are obtained by applying short periods of warm ischemia followed by reperfusion prior to extended ischemic insults to the organs. In the present study, we evaluated whether IPC can reduce pancreatic tissue injury following cold ischemic preservation.
View Article and Find Full Text PDFMicroRNAs regulate gene expression by inhibiting translation or inducing target mRNA degradation. MicroRNAs regulate organ differentiation and embryonic development, including pancreatic specification and islet function. We showed previously that miR-7 is highly expressed in human pancreatic fetal and adult endocrine cells.
View Article and Find Full Text PDFAlongside Pdx1 and Beta2/NeuroD, the transcription factor MafA has been shown to be instrumental in the maintenance of the beta cell phenotype. Indeed, a combination of MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD) was recently reported to lead to the effective reprogramming of acinar cells into insulin-producing beta cells. These experiments set the stage for the development of new strategies to address the impairment of glycemic control in diabetic patients.
View Article and Find Full Text PDFBackground: MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study.
Results: The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga), was obtained by PCR-based high throughput screening with Taqman Low Density Arrays.