Publications by authors named "Ricardo Hernandez-Morales"

The catalytic, regulatory and structural properties of RNA, combined with their extraordinary ubiquity in cellular processes, are consistent with the proposal that this molecule played a much more conspicuous role in heredity and metabolism during the early stages of biological evolution. This review explores the pivotal role of RNA in the earliest life forms and its relevance in modern biological systems. It examines current models that study the early evolution of life, providing insights into the primordial RNA world and its legacy in contemporary biology.

View Article and Find Full Text PDF

The question "What is life?" has existed since the beginning of recorded history. However, the scientific and philosophical contexts of this question have changed and been refined as advancements in technology have revealed both fine details and broad connections in the network of life on Earth. Understanding the framework of the question "What is life?" is central to formulating other questions such as "Where else could life be?" and "How do we search for life elsewhere?" While many of these questions are addressed throughout the Astrobiology Primer 3.

View Article and Find Full Text PDF

The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology.

View Article and Find Full Text PDF

The rapid spread and public health impact of the novel SARS-CoV-2 variants that cause COVID-19 continue to produce major global impacts and social distress. Several vaccines were developed in record time to prevent and limit the spread of the infection, thus playing a pivotal role in controlling the pandemic. Although the repurposing of available drugs attempts to provide therapies of immediate access against COVID-19, there is still a need for developing specific treatments for this disease.

View Article and Find Full Text PDF

Low complexity regions (LCRs) are protein sequences formed by a set of compositionally biased residues. LCRs are extremely abundant in cellular proteins and have also been reported in viruses, where they may partake in evasion of the host immune system. Analyses of 28,231 SARS-CoV-2 whole proteomes and of 261,051 spike protein sequences revealed the presence of four extremely conserved LCRs in the spike protein of several SARS-CoV-2 variants.

View Article and Find Full Text PDF

Nidoviruses and arenaviruses are the only known RNA viruses encoding a 3'-5' exonuclease domain (ExoN). The proofreading activity of the ExoN domain has played a key role in the growth of nidoviral genomes, while in arenaviruses this domain partakes in the suppression of the host innate immune signaling. Sequence and structural homology analyses suggest that these proteins have been hijacked from cellular hosts many times.

View Article and Find Full Text PDF

Of the six known autotrophic pathways, the Wood-Ljungdahl pathway (WL) is the only one present in both the acetate producing Bacteria (homoacetogens) and the methane producing Archaea (hydrogenotrophic methanogens), and it has been suggested that WL is one of the oldest metabolic pathways. However, only the so-called carbonyl branch is shared by Archaea and Bacteria, while the methyl branch is different, both in the number of reactions and enzymes, which are not homologous among them. In this work we show that some parts of the methyl branch of archaeal Wood-Ljungdahl pathway (MBWL) are present in bacteria as well as in non-methanogen archaea, although the tangled evolutionary history of MBWL cannot be traced back to the Last Common Ancestor.

View Article and Find Full Text PDF

All known alarmones are ribonucleotides or ribonucleotide derivatives that are synthesized when cells are under stress conditions, triggering a stringent response that affects major processes such as replication, gene expression, and metabolism. The ample phylogenetic distribution of alarmones (e.g.

View Article and Find Full Text PDF

Low complexity regions (LCRs) are sequences of nucleic acids or proteins defined by a compositional bias. Their occurrence has been confirmed in sequences of the three cellular lineages (Bacteria, Archaea and Eucarya), and has also been reported in viral genomes. We present here the results of a detailed computer analysis of the LCRs present in the HIV-1 glycoprotein 120 (gp120) encoded by the viral gene env.

View Article and Find Full Text PDF

The results of a detailed bioinformatic search for ribonucleotidyl coenzyme biosynthetic sequences in DNA- and RNA viral genomes are presented. No RNA viral genome sequence available as of April 2011 appears to encode for sequences involved in coenzyme biosynthesis. In both single- and double-stranded DNA viruses a diverse array of coenzyme biosynthetic genes has been identified, but none of the viral genomes examined here encodes for a complete pathway.

View Article and Find Full Text PDF

Inventories of the gene content of the last common ancestor (LCA), i.e., the cenancestor, include sequences that may have undergone horizontal transfer events, as well as sequences that have originated in different pre-cenancestral epochs.

View Article and Find Full Text PDF