Hybrid core-shell lipid-polycation-nucleic acid nanoparticles (LPNPs) provide unique delivery strategies for nonviral gene therapeutics. Since LPNPs consist of multiple components, involving different pairwise interactions between them, they are challenging to characterize and understand. Here, we propose a method based on fluorescence cross-correlation spectroscopy to elucidate the association between the three LPNP components.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2022
The impact of nanotechnology on the exponential growth of several research areas, particularly nanomedicine, is undeniable. The ability to deliver active molecules to the desired site could significantly improve the efficiency of medical treatments. One of the nanocarriers developed which has drawn researchers' attention are cubosomes, which are nanosized dispersions of lipid bicontinuous cubic phases in water, consisting of a lipidic interior and aqueous domains folded in a cubic lattice.
View Article and Find Full Text PDFClustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease 9 (Cas9) gene-editing offers exciting new therapeutic possibilities for disease treatment with a genetic etiology such as cancer, cardiovascular, neuronal, and immune disorders. However, its clinical translation is being hampered by the lack of safe, versatile, and effective nonviral delivery systems. Herein we report on the preparation and application of two cationic liposome−DNA systems (i.
View Article and Find Full Text PDFThe effective protection and delivery of antisense oligomers to its site of action is a challenge without an optimal strategy. Some of the most promising approaches encompass the complexation of nucleic acids, which are anionic, with liposomes of fixed or ionizable cationic charge. Thus, the main purpose of this work was to study the complexation of cationic liposomes with anti-EFG1 2'OMe oligomers and evaluate the complex efficacy to control Candida albicans filamentation in vitro and in vivo using a Galleria mellonella model.
View Article and Find Full Text PDFα-Synuclein is a membrane-interacting protein involved in Parkinson's disease. Here we have investigated the co-association of α-synuclein and lipids from ganglioside-containing model membranes. Our study relies on the reported importance of ganglioside lipids, which are found in high amounts in neurons and exosomes, on cell-to-cell prion-like transmission of misfolded α-synuclein.
View Article and Find Full Text PDFCancer is an extremely complex disease, typically caused by mutations in cancer-critical genes. By delivering therapeutic nucleic acids (NAs) to patients, gene therapy offers the possibility to supplement, repair or silence such faulty genes or to stimulate their immune system to fight the disease. While the challenges of gene therapy for cancer are significant, the latter approach (a type of immunotherapy) starts showing promising results in early-stage clinical trials.
View Article and Find Full Text PDFThe development of nonviral gene delivery vehicles for therapeutic applications requires methods capable of quantifying the association between the genes and their carrier counterparts. Here we investigate the potential of fluorescence cross-correlation spectroscopy (FCCS) to characterize and optimize the assembly of nonviral cationic liposome (CL)-DNA complexes based on a CL formulation consisting of the cationic lipid DOTAP and zwitterionic lipid DOPC. We use a DNA plasmid for lipoplex loading encoding the Oct4 gene, critically involved in reprogramming somatic cells into induced pluripotent stem cells.
View Article and Find Full Text PDFα-Synuclein (α-syn) is an intrinsically disordered protein with a highly asymmetric charge distribution, whose aggregation is linked to Parkinson's disease. The effect of ionic strength was investigated at mildly acidic pH (5.5) in the presence of catalytic surfaces in the form of α-syn seeds or anionic lipid vesicles using thioflavin T fluorescence measurements.
View Article and Find Full Text PDFParkinson´s disease is characterized by the accumulation of proteinaceous aggregates in Lewy bodies and Lewy Neurites. The main component found in such aggregates is α-synuclein. Here, we investigate how bovine eye lens crystallin proteins influence the aggregation kinetics of α-synuclein at mildly acidic pH (5.
View Article and Find Full Text PDFBackground: Long-term studies of community and population dynamics indicate that abrupt disturbances often catalyse changes in vegetation and carbon stocks. These disturbances include the opening of clearings, rainfall seasonality, and drought, as well as fire and direct human disturbance. Such events may be super-imposed on longer-term trends in disturbance, such as those associated with climate change (heating, drying), as well as resources.
View Article and Find Full Text PDFAllergic diseases are a major health concern worldwide. Pollens are important triggers for allergic rhinitis, conjunctivitis and asthma. Proteases released upon pollen grain hydration appear to play a major role in the typical immunological and inflammatory responses that occur in patients with allergic disorders.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
May 2019
The deposition of α-synuclein fibrils is one hallmark of Parkinson's disease. Here, we investigate how ganglioside lipids, present in high amounts in neurons and exosomes, influence the aggregation kinetics of α-synuclein. Gangliosides, as well as, other anionic lipid species with small or large headgroups were found to induce conformational changes of α-synuclein monomers and catalyse their aggregation at mildly acidic conditions.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
August 2018
The deposition of α-synuclein fibrils is one hallmark of Parkinson's disease. Here, we investigate how ganglioside lipids, present in high amounts in neurons and exosomes, influence the aggregation kinetics of α-synuclein. Gangliosides, as well as, other anionic lipid species with small or large headgroups were found to induce conformational changes of α-synuclein monomers and catalyse their aggregation at mildly acidic conditions.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by proteinaceous aggregates named Lewy Bodies and Lewy Neurites containing α-synuclein fibrils. The underlying aggregation mechanism of this protein is dominated by a secondary process at mildly acidic pH, as in endosomes and other organelles. This effect manifests as a strong acceleration of the aggregation in the presence of seeds and a weak dependence of the aggregation rate on monomer concentration.
View Article and Find Full Text PDFPurpose: Studies have suggested that corneal biomechanical properties influence intraocular pressure (IOP) measurements, namely central corneal thickness (CCT) and corneal hysteresis (CH). The present study aimed to investigate the associations of CH and CCT with glaucoma development.
Methods: We performed a review of the literature and meta-analysis of observational studies (2006-2016) that included both adult glaucoma patients and controls and reported CCT and CH as outcomes.
Exosomes are small vesicles released from cells into extracellular space. We have isolated exosomes from neuroblastoma cells and investigated their influence on the aggregation of α-synuclein, a protein associated with Parkinson disease pathology. Using cryo-transmission electron microscopy of exosomes, we found spherical unilamellar vesicles with a significant protein content, and Western blot analysis revealed that they contain, as expected, the proteins Flotillin-1 and Alix.
View Article and Find Full Text PDFThe formation of amyloid fibrils by the intrinsically disordered protein α-synuclein is a hallmark of Parkinson disease. To characterize the microscopic steps in the mechanism of aggregation of this protein we have used in vitro aggregation assays in the presence of preformed seed fibrils to determine the molecular rate constant of fibril elongation under a range of different conditions. We show that α-synuclein amyloid fibrils grow by monomer and not oligomer addition and are subject to higher-order assembly processes that decrease their capacity to grow.
View Article and Find Full Text PDFThe cork stopper manufacturing process includes an operation, known as stabilisation, by which humid cork slabs are extensively colonised by fungi. The effects of fungal growth on cork are not completely understood although they are considered to be involved in the so-called "cork taint" of wine. It is essential to (a) identify environmental constraints which define the appearance of the colonising fungal species and (b) trace their origin to the forest and/or the manufacturing space.
View Article and Find Full Text PDF