Acta Otorrinolaringol Esp (Engl Ed)
November 2024
Critical defects of the mandibular bone are very difficult to manage with currently available materials and technology. In the present work, we generated acellular and cellular substitutes for human bone by tissue engineering using nanostructured fibrin-agarose biomaterials, with and without adipose-tissue-derived mesenchymal stem cells differentiated to the osteogenic lineage using inductive media. Then, these substitutes were evaluated in an immunodeficient animal model of severely critical mandibular bone damage in order to assess the potential of the bioartificial tissues to enable bone regeneration.
View Article and Find Full Text PDFThe use of mucoperiostial flaps during cleft palate surgery is associated with altered palatal bone growth and development. We analyzed the potential usefulness of a bioengineered oral mucosa in an in vivo model of cleft palate. First, a 4 mm palate defect was created in one side of the palate oral mucosa of 3 week-old New Zealand rabbits, and a complete autologous bioengineered oral mucosa (BOM) or acellular fibrin-agarose scaffold (AS) was implanted.
View Article and Find Full Text PDF