Publications by authors named "Ricardo D Sosa"

A modeling process is developed and validated with which active pharmaceutical ingredient (API) release is predicted across the United States Pharmacopeia (USP) dissolution apparatuses I and II based on limited experimental dissolution data (at minimum two dissolution profiles at different apparatus settings). The process accounts for formulation-specific drug release behavior and hydrodynamics in the apparatuses over the range of typical agitation rates and medium volumes. This modeling process involves measurement of experimental mass transfer coefficients via a conventional mass balance and the relationship of said mass transfer coefficients to hydrodynamics and apparatus setting via computational fluid dynamics (CFD).

View Article and Find Full Text PDF

Barium sulfate (barite) scale poses significant challenges for processes ranging from water treatment to fossil fuel production. Here, we identify alginate (a polysaccharide derived from brown algae) as a potent, "green" alternative to commercial barite demineralizing agents. Unlike conventional treatments of inorganic scales that require caustic conditions, alginate polymers dissolve barite at near-neutral conditions.

View Article and Find Full Text PDF

Crystallization of mineral scale components ubiquitously plagues industrial systems for water treatment, energy production, and manufacturing. Chemical scale inhibitors and/or dissolvers are often employed to control scale formation, but their efficacy in flow conditions remains incompletely understood. We present a microfluidic platform to elucidate the time-resolved processes controlling crystallization and dissolution of barite, a highly insoluble and chemically resistant component of inorganic scale, in the presence of flow.

View Article and Find Full Text PDF

Crystallization is often facilitated by modifiers that interact with specific crystal surfaces and mediate the anisotropic rate of growth. Natural and synthetic modifiers tend to function as growth inhibitors that hinder solute attachment and impede the advancement of layers on crystal surfaces. There are fewer examples of modifiers that operate as growth promoters, whereby modifier-crystal interactions accelerate the kinetic rate of crystallization.

View Article and Find Full Text PDF