A series of (NHC)(cod)Ir(I) complexes bearing NHC-carboxylate ligands were efficiently synthesized and fully characterized. Their solid-state structures confirmed the bidentate coordination mode of these LX-type NHC ligands. These unprecedented iridium(I) complexes demonstrated efficient catalytic activities in dehydrogenative directed C-H silylation of arenes, and allowed for excellent -selectivity control with aromatic silylating agents.
View Article and Find Full Text PDFA series of mixed bis-NHC rhodium(I) complexes of type RhCl(η-olefin)(NHC)(NHC') have been synthesized by a stepwise reaction of [Rh(-Cl)(η-olefin)] with two different NHCs (NHC = N-heterocyclic carbene), in which the steric hindrance of both NHC ligands and the η-olefin is critical. Similarly, new mixed coumarin-functionalized bis-NHC rhodium complexes have been prepared by a reaction of mono NHC complexes of type RhCl(NHC-coumarin)(η,η-cod) with the corresponding azolium salt in the presence of an external base. Both synthetic procedures proceed selectively and allow the preparation of mixed bis-NHC rhodium complexes in good yields.
View Article and Find Full Text PDFThe dinuclear complex [Rh(μ-Cl)(η -coe)(IPr)] is an efficient catalyst for the O-selective Markovnikov-type addition of 2-pyridones to terminal alkynes. DFT calculations support a hydride-free pathway entailing intramolecular oxidative protonation of a π-alkyne by a κ N-hydroxypyridine ligand. Subsequent O-nucleophilic attack on a metallacyclopropene species affords an O-alkenyl-2-oxypyridine chelate rhodium intermediate as the catalyst resting state.
View Article and Find Full Text PDFA set of iridium(i) complexes of formula IrCl(κC,η-ICou)(cod) or IrCl(κC, η-BzICou)(cod) (cod = 1,5-cyclooctadiene; Cou = coumarin; I = imidazolin-2-carbene; BzI = benzimidazolin-2-carbene) have beeen prepared from the corresponding azolium salt and [Ir(μ-OMe)(cod)] in THF at room temperature. The crystalline structures of 4b and 5b show a distorted trigonal bipyramidal configuration in the solid state with a coordinated coumarin moiety. In contrast, an equilibrium between this pentacoordinated structure and the related square planar isomer is observed in solution as a consequence of the hemilability of the pyrone ring.
View Article and Find Full Text PDFIridium(I) N-heterocyclic carbene complexes of formula Ir(κ O,O'-BHetA)(IPr)(η -coe) [BHetA=bis-heteroatomic acidato, acetylacetonate or acetate; IPr=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-carbene; coe=cyclooctene] have been prepared by treating Ir(κ O,O'-BHetA)(η -coe) complexes with IPr. These complexes react with 2-vinylpyridine to afford the hydrido-iridium(III)-alkenyl cyclometalated derivatives IrH(κ O,O'-BHetA)(κ N,C-C H N)(IPr) through the iridium(I) intermediate Ir(κ O,O'-BHetA)(IPr)(η -C H N). The cyclometalated IrH(κ O,O'-acac)(κ N,C-C H N)(IPr) complex efficiently catalyzes the hydroalkenylation of aromatic and aliphatic terminal alkynes and enynes with 2-vinylpyridine to afford 2-(4R-butadienyl)pyridines with Z,E configuration as the major reaction products (yield up to 89 %).
View Article and Find Full Text PDFA series of Rh(κ -BHetA)(η -coe)(IPr) complexes bearing 1,3-bis-hetereoatomic acidato ligands (BHetA) including carboxylato (O,O), thioacetato (O,S), amidato (O,N), thioamidato (N,S), and amidinato (N,N), have been prepared by reaction of the dinuclear precursor [Rh(μ-Cl)(IPr)(η -coe)] with the corresponding anionic BHetA species. The Rh -NHC-BHetA compounds catalyze the dimerization of aryl alkynes, showing excellent selectivity for the head-to-tail enynes. Among them, the acetanilidato-based catalyst has shown an outstanding catalytic performance reaching unprecedented TOF levels of 2500 h with complete selectivity for the gem-isomer.
View Article and Find Full Text PDFThe regioselective double hydrophosphination of alkynes mediated by rhodium catalysts is presented. The distinctive stereoelectronic properties of the NHC ligand prevent the catalyst deactivation by diphosphine coordination thereby allowing for the closing of a productive catalytic cycle.
View Article and Find Full Text PDFExperimental and theoretical studies on the factors that control the coordination chemistry of N-donor ligands in square-planar complexes of the type RhCl(NHC)L(1)L(2) (NHC = N-heterocyclic carbene) are presented. The dinuclear complexes [Rh(μ-Cl)(IPr)(η(2)-olefin)]2 {IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-carbene} have been reacted with different combinations of ligands including pyridine, acetonitrile, 2-pyridylacetonitrile, triphenylphosphine, tricyclohexylphosphine, carbon monoxide or molecular oxygen. In addition, the reactivity of RhCl(IPr)(PPh3)2 has also been studied.
View Article and Find Full Text PDFThe synthesis and structural characterization of zwitterionic [(η(6)-C6H5-BPh3)M(coe)2] (M = Rh, Ir) cyclooctene complexes is described. Both complexes exhibit an unusual exo-endo conformation of both cyclooctene ligands in the solid state. However, an equilibrium between the endo-endo and exo-endo rotational isomers arising from the hindered rotation about the metal-cyclooctene bond is observed in solution.
View Article and Find Full Text PDFA series of neutral and cationic Rh(III) -hydride and Rh(III) -ethyl complexes bearing a NHC ligand has been synthesized and evaluated as catalyst precursors for H/D exchange of styrene using CD(3)OD as a deuterium source. Various ligands have been examined in order to understand how the stereoelectronic properties can modulate the catalytic activity. Most of these complexes proved to be very active and selective in the vinylic H/D exchange, without deuteration at the aromatic positions, displaying very high selectivity toward the β-positions.
View Article and Find Full Text PDFA general regioselective rhodium-catalyzed head-to-tail dimerization of terminal alkynes is presented. The presence of a pyridine ligand (py) in a Rh-N-heterocyclic-carbene (NHC) catalytic system not only dramatically switches the chemoselectivity from alkyne cyclotrimerization to dimerization but also enhances the catalytic activity. Several intermediates have been detected in the catalytic process, including the π-alkyne-coordinated Rh(I) species [RhCl(NHC)(η(2)-HC≡CCH2Ph)(py)] (3) and [RhCl(NHC){η(2)-C(tBu)≡C(E)CH=CHtBu}(py)] (4) and the Rh(III)-hydride-alkynyl species [RhClH{-C≡CSi(Me)3}(IPr)(py)2] (5).
View Article and Find Full Text PDFForging the lock that autolocks! Rh-NHC catalysts promote a new access to 4 H-quinolizine species from 2-vinylpyridine and terminal and internal alkynes through C-H activation and C-C coupling reactions (see figure). N-Bridgehead heterocycle formation is favored for internal- over terminal-substituted butadienylpyridine derivatives in a thermal 6π-electrocyclization process.
View Article and Find Full Text PDFThe reaction of [Rh(μ-SH)(CO)(PPh(3))](2) or [Rh(μ-SH){P(OPh)(3)}(2)](2) with [Cp*MCl(2)](2) (M = Rh, Ir) in the presence of NEt(3) afforded the Rh(3) and IrRh(2) sulfido-bridged compounds [Cp*M(μ(3)-S)(2)Rh(2)(CO)(2)(PPh(3))(2)] (M = Rh, 1; Ir, 2) and [Cp*Rh(μ(3)-S)(2)Rh(2){P(OPh)(3)}(4)] (3). The reaction with [MCl(2)(cod)] (M = Pd, Pt), cis-[PtCl(2)(PPh(3))(2)] or [(η(6)-C(6)H(6))RuCl(2)](2) under the same experimental conditions gave [(cod)M(μ(3)-S)(2)Rh(2){P(OPh)(3)}(4)] (M = Pd, 6; Pt, 7), [(cod)M(μ(3)-S)(2)Rh(2)(CO)(2)(PPh(3))(2)] (M = Pd, 8; Pt, 9), [(PPh(3))(2)Pt(μ(3)-S)(2)Rh(2)(CO)(2)(PPh(3))(2)] (10) and [(η(6)-C(6)H(6))Ru(μ(3)-S)(2)Rh(2)(CO)(2)(PPh(3))(2)] (12), with PdRh(2), PtRh(2) and RuRh(2) trimetallic cores. The aggregates derived from [Rh(μ-SH)(CO)(PPh(3))](2) were isolated as a mixture of trans and cis isomers in which the trans isomer predominates.
View Article and Find Full Text PDFThe hydrothiolation of unsaturated carbon-carbon bonds is a practical and atom-economical approach for the incorporation of sulfur into organic frameworks. In recent years, we have witnessed the development of a range of transition-metal-based catalytic systems for the control of the regio- and stereoselectivity. In this Minireview we highlight the mechanistic background behind this transformation so as to help the design of more specific and active organometallic hydrothiolation catalysts.
View Article and Find Full Text PDFRh-N-heterocyclic carbene compounds [Rh(μ-Cl)(IPr)(η(2)-olefin)](2) and RhCl(IPr)(py)(η(2)-olefin) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-carbene, py = pyridine, olefin = cyclooctene or ethylene) are highly active catalysts for alkyne hydrothiolation under mild conditions. A regioselectivity switch from linear to 1-substituted vinyl sulfides was observed when mononuclear RhCl(IPr)(py)(η(2)-olefin) catalysts were used instead of dinuclear precursors. A complex interplay between electronic and steric effects exerted by IPr, pyridine, and hydride ligands accounts for the observed regioselectivity.
View Article and Find Full Text PDFThe Nazarov reaction is an acid-catalyzed 4pi-electrocyclic ring closure of dienylketones, which affords cyclopentenones. This type of cyclization has been increasing in interest over the years, due to the importance of the construction of five-membered rings in the synthesis of natural products. However, one potential problem is that the carbonyl group necessary for the cyclization to occur may not be required in the final synthetic target and can sometimes be difficult to remove or modify.
View Article and Find Full Text PDFComplex [OsH(=C=C=CPh2)(CH3CN)2(PiPr3)2]BF4 (1) reacts with primary and secondary alcohols to give the corresponding dehydrogenated alcohols and the hydride-carbene derivative [OsH(=CHCH=CPh2)(CH3CN)2(PiPr3)2]BF4 (2), as a result of hydrogen transfer reactions from the alcohols to the Calpha-Cbeta double bond of the allenylidene ligand of 1. The reactions with phenol and t-butanol, which do not contain any beta-hydrogen, afford the alkoxy-hydride-carbyne complexes [OsH(OR)(CCH=CPh2)(CH3CN)(PiPr3)2]BF4 (R = Ph (3), tBu (4)), as a consequence of the 1,3-addition of the O-H bond of the alcohols to the metallic center and the Cbeta atom of the allenylidene of 1. On the basis of the reactions of 1 with these tertiary alcohols, deuterium labeling experiments, and DFT calculations, the mechanism of the hydrogenation is proposed.
View Article and Find Full Text PDFThe allenylidene-ruthenium complexes [(eta6-arene)RuCl(=C=C=CR2)(PR'3)]OTf (R2 = Ph; fluorene, Ph, Me; PR'3 = PCy3, P(i)Pr3, PPh3) (OTf = CF3SO3) on protonation with HOTf at -40 C are completely transformed into alkenylcarbyne complexes [(eta6-p-cymene)RuCl([triple bond]CCH=CR2)(PR3)](OTf)2. At -20 degrees C the latter undergo intramolecular rearrangement of the allenylidene ligand, with release of HOTf, into the indenylidene group in derivatives [(eta6-arene)RuCl(indenylidene)(PR3)]OTf. The in situ-prepared indenylidene-ruthenium complexes are efficient catalyst precursors for ring-opening metathesis polymerization of cyclooctene and cyclopentene, reaching turnover frequencies of nearly 300 s(-1) at room temperature.
View Article and Find Full Text PDFTreatment in acetonitrile at -30 C of the hydride-alkenylcarbyne complex [OsH([triple bond]CCH=CPh2)(CH3CN)2(P(i)Pr3)2][BF4]2 (1) with (t)BuOK produces the selective deprotonation of the alkenyl substituent of the carbyne and the formation of the bis-solvento hydride-allenylidene derivative [OsH(=C=C=CPh2)(CH3CN)2(P(i)Pr3)2]BF4 (2), which under carbon monoxide atmosphere is converted into [Os(CH=C=CPh2)(CO)(CH3CN)2(P(i)Pr3)2]BF4 (3). When the treatment of 1 with (t)BuOK is carried out in dichloromethane at room temperature, the fluoro-alkenylcarbyne [OsHF([triple bond]CCH=CPh2)(CH3CN)(P(i)Pr3)2]BF4 (4) is isolated. Complex 2 reacts with terminal alkynes.
View Article and Find Full Text PDFThe elongated dihydrogen complex [formula: see text](1) reacts with 1,1-diphenyl-2-propyn-1-ol and 2-methyl-3-butyn-2-ol to give the hydride-hydroxyvinylidene-pi-alkynol derivatives [OsH{=C=CHC(OH)R2}{eta2-HC(triple bond)CC(OH)R2}(PiPr3)2]BF4 (R = Ph (2), Me (3)), where the pi-alkynols act as four-electron donor ligands. Treatment of 2 and 3 with HBF(4) and coordinating solvents leads to the dicationic hydride-alkenylcarbyne compounds [OsH((triple bond)CCH=CR2)S2(PiPr3)2][BF4]2 (R = Ph, S = H(2)O (4), CH(3)CN (5); R = Me, S = CH(3)CN (6)), which in acetonitrile evolve into the alkenylcarbene complexes [Os(=CHCH=CR2)(CH3CN)3(PiPr3)2][BF4](2) (R = Ph (7), Me (8)) by means of a concerted 1,2-hydrogen shift from the osmium to the carbyne carbon atom. Treatment of 2-propanol solutions of 5 with NaCl affords OsHCl2((triple bond)CCH=CPh2)(PiPr3)2 (10), which reacts with AgBF(4) and acetonitrile to give [OsHCl((triple bond)CCH=CPh2)(CH3CN)(PiPr3)2]BF(4) (11).
View Article and Find Full Text PDF