Publications by authors named "Ricardo Borges Machado"

Modernity imposes a toll on the sleep time of young population, with concomitant increase in symptoms of anxiety and depression. Whether there is a causal relationship between these events are only now being experimentally tested in humans and rodents. In a previous study, we showed that chronic sleep deprivation in juvenile-adolescent male rats led to increased anxiety-like behaviour and changes in noradrenaline and serotonin in the amygdala and hippocampus.

View Article and Find Full Text PDF

Aim: To test the hypothesis that the antidepressant-like effect of omega-3 polyunsaturated fatty acids is related to the Indoleamine-2,3-Dioxygenase (IDO) inhibition.

Methods: Animals were supplemented for 50 days with 3.0 g/kg of Fish Oil (FO) or received water (Control group - C), via gavage.

View Article and Find Full Text PDF

Adolescence is marked by major physiological changes, including those in the sleep-wake cycle, such as phase delay, which may result in reduced sleep hours. Sleep restriction and/or deprivation in adult rats activate stress response and seem to be a risk factor for triggering emotional disorders. In the present study, we sought to evaluate the behavioral and neurobiological consequences of prolonged REM sleep restriction in juvenile male rats.

View Article and Find Full Text PDF

Sleep homeostasis depends on the length and quality (occurrence of stressful events, for instance) of the preceding waking time. Forced wakefulness (sleep deprivation or sleep restriction) is one of the main tools used for the understanding of mechanisms that play a role in homeostatic processes involved in sleep regulation and their interrelations. Interestingly, forced wakefulness for periods longer than 24 h activates stress response systems, whereas stressful events impact on sleep pattern.

View Article and Find Full Text PDF

REM sleep rebound is a common behavioural response to some stressors and represents an adaptive coping strategy. Animals submitted to multiple, intermittent, footshock stress (FS) sessions during 96h of REM sleep deprivation (REMSD) display increased REM sleep rebound (when compared to the only REMSD ones, without FS), which is correlated to high plasma prolactin levels. To investigate whether brain prolactin plays a role in stress-induced REM sleep rebound two experiments were carried out.

View Article and Find Full Text PDF

Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM) sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound.

View Article and Find Full Text PDF

Stress and sleep are related to each other in a bidirectional way. If on one hand poor or inadequate sleep exacerbates emotional, behavioral, and stress-related responses, on the other hand acute stress induces sleep rebound, most likely as a way to cope with the adverse stimuli. Chronic, as opposed to acute, stress impairs sleep and has been claimed to be one of the triggering factors of emotional-related sleep disorders, such as insomnia, depressive- and anxiety-disorders.

View Article and Find Full Text PDF

Studies have shown that sleep recovery following different protocols of forced waking varies according to the level of stress inherent to each method. Sleep deprivation activates the hypothalamic-pituitary-adrenal axis and increased corticotropin-releasing hormone (CRH) impairs sleep. The purpose of the present study was to evaluate how manipulations of the CRH system during the sleep deprivation period interferes with subsequent sleep rebound.

View Article and Find Full Text PDF

Previous studies suggest that stress associated to sleep deprivation methods can affect the expression of sleep rebound. In order to examine this association and possible mechanisms, rats were exposed to footshock stress during or immediately after a 96-h period of paradoxical sleep deprivation (PSD) and their sleep and heart rate were recorded. Control rats (maintained in individual home cages) and paradoxical sleep-deprived (PS-deprived) rats were distributed in three conditions (1) no footshock--NF; (2) single footshock--SFS: one single footshock session at the end of the PSD period (6-8 shocks per minute; 100 ms; 2 mA; for 40 min); and (3) multiple footshock--MFS: footshock sessions with the same characteristics as described above, twice a day throughout PSD (at 7:00 h and 19:00 h) and one extra session before the recovery period.

View Article and Find Full Text PDF

Objective: To review the literature on the interaction between sleep and the immune system.

Method: A search on Web of Science and Pubmed database including the keywords sleep, sleep deprivation, stress, hypothalamic-pituitary-adrenal axis, immune system, and autoimmune diseases.

Results: On Web of Science, 588 publications were retrieved; 61 references, more significant and closer to our objective, were used, including original articles and review papers.

View Article and Find Full Text PDF

The purpose of the present study was to evaluate the sleep homeostasis of rats submitted to a protocol of chronic sleep restriction by two methods and to evaluate the sleep characteristics during the recovery period. The sleep restriction protocol was accomplished by sleep depriving rats for 18 h everyday for 21 days, using the single platform method (SPM) or the modified multiple platform method (MMPM) of paradoxical sleep (PS) deprivation. Rats were allowed to sleep for 6 h (from 10:00 to 16:00; starting 3 h after lights on) in their individual home-cages, during which their sleep was recorded.

View Article and Find Full Text PDF

Numerous studies have evaluated the sleep homeostasis of rats after short- or long-periods of sleep deprivation, but none has assessed the effects of prolonged sleep restriction on the rat's sleep pattern. The purpose of the present study, therefore, was to evaluate the sleep homeostasis of rats under a protocol of chronic sleep restriction. Male Wistar rats were implanted with electrodes for EEG and EMG recordings.

View Article and Find Full Text PDF

Vigilance status was continually monitored in socially stable groups of rats exposed to the modified multiple platform (MMP) technique for sleep deprivation. For comparison, sleep parameters were also monitored in socially isolated rats deprived of sleep by the single platform (SP) method. In all cases, sleep was continuously recorded during baseline, during 96 h of sleep deprivation and during 4 days of recovery.

View Article and Find Full Text PDF

A recent study has established that paradoxical sleep deprivation (PSD) and cocaine administration elicit genital reflexes (penile erection and ejaculation) in young rats. To discover whether the same effects occurred in old animals submitted to PSD, we administered cocaine (15 mg/kg) to young (3-month) and old (22-month) male rats after a 4-day period of PSD or at the equivalent time-point in control animals. We then evaluated erections and ejaculations.

View Article and Find Full Text PDF