The global elimination of lymphatic filariasis (LF) is a major focus of the World Health Organization. One key challenge is locating residual infections that can perpetuate the transmission cycle. We show how a targeted sampling strategy using predictions from a geospatial model, combining random forests and geostatistics, can improve the sampling efficiency for identifying locations with high infection prevalence.
View Article and Find Full Text PDFThe identification of disease hotspots is an increasingly important public health problem. While geospatial modeling offers an opportunity to predict the locations of hotspots using suitable environmental and climatological data, little attention has been paid to optimizing the design of surveys used to inform such models. Here we introduce an adaptive sampling scheme optimized to identify hotspot locations where prevalence exceeds a relevant threshold.
View Article and Find Full Text PDFBackground: As malaria cases have declined throughout Nepal, imported cases comprise an increasing share of the remaining malaria caseload, yet how to effectively target mobile and migrant populations (MMPs) at greatest risk is not well understood. This formative research aimed to confirm the link between imported and indigenous cases, characterize high-risk MMPs, and identify opportunities to adapt surveillance and intervention strategies to them.
Methods: The study used a mixed-methods approach in three districts in far and mid-western Nepal, including (i) a retrospective analysis of passive surveillance data, (ii) a quantitative health facility-based survey of imported cases and their MMP social contacts recruited by peer-referral, and (iii) focus group (FG) discussions and key informant interviews (KIIs) with a subset of survey participants.
Household electricity access data in Africa are scarce, particularly at the subnational level. We followed a model-based Geostatistics approach to produce maps of electricity access between 2000 and 2013 at a 5 km resolution. We collated data from 69 nationally representative household surveys conducted in Africa and incorporated nighttime lights imagery as well as land use and land cover data to produce maps of electricity access between 2000 and 2013.
View Article and Find Full Text PDFHaving accurate maps depicting the locations of residential buildings across a region benefits a range of sectors. This is particularly true for public health programs focused on delivering services at the household level, such as indoor residual spraying with insecticide to help prevent malaria. While open source data from OpenStreetMap (OSM) depicting the locations and shapes of buildings is rapidly improving in terms of quality and completeness globally, even in settings where all buildings have been mapped, information on whether these buildings are residential, commercial or another type is often only available for a small subset.
View Article and Find Full Text PDFQuantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data.
View Article and Find Full Text PDFBackground: Four malaria indicator surveys (MIS) were conducted in Zambia between 2006 and 2012 to evaluate malaria control scale-up. Nationally, coverage of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) increased over this period, while parasite prevalence in children 1-59 months decreased dramatically between 2006 and 2008, but then increased from 2008 to 2010. We assessed the relative effects of vector control coverage and climate variability on malaria parasite prevalence over this period.
View Article and Find Full Text PDF