This work provides a novel, low-cost, and effective method to prepare disordered carbon materials for advanced sodium-ion batteries using biomass. A large amount of olive stone waste is yearly produced in the world, and it could be re-used for fine applications other than fuel for heat production. After treatment with sulfuric acid solution and carbonization process, wastes of olive stone are efficiently transformed into optimized carbon electrode material.
View Article and Find Full Text PDFDeveloping sustainable batteries based on abundant elements such as sodium and manganese is very attractive. Thus, sodium-manganese oxides can be employed as electrodes for sodium-ion batteries. Herein, an NaMnOF electrode material is investigated and optimized.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2023
The investigation into intercalation mechanisms in vanadium pentoxide has garnered significant attention within the realm of research, primarily propelled by its remarkable theoretical capacity for energy storage. This comprehensive review delves into the latest advancements that have enriched our understanding of these intricate mechanisms. Notwithstanding its exceptional storage capacity, the compound grapples with challenges arising from inherent structural instability.
View Article and Find Full Text PDFAfter more than 30 years of delay compared to lithium-ion batteries, sodium analogs are now emerging in the market. This is a result of the concerns regarding sustainability and production costs of the former, as well as issues related to safety and toxicity. Electrode materials for the new sodium-ion batteries may contain available and sustainable elements such as sodium itself, as well as iron or manganese, while eliminating the common cobalt cathode compounds and copper anode current collectors for lithium-ion batteries.
View Article and Find Full Text PDFDeveloping new and sustainable batteries is essential for modern society. Both cationic doping ( transition metals) and anionic doping (F, O, S, PO, etc.) can be employed to improve the electrochemical behaviour of electrode materials.
View Article and Find Full Text PDFA post-lithium battery era is envisaged, and it is urgent to find new and sustainable systems for energy storage. Multivalent metals, such as magnesium, are very promising to replace lithium, but the low mobility of magnesium ion and the lack of suitable electrolytes are serious concerns. This review mainly discusses the advantages and shortcomings of the new rechargeable magnesium batteries, the future directions and the possibility of using solid electrolytes.
View Article and Find Full Text PDFRechargeable magnesium batteries attract lots of attention because of their high safety and low cost compared to lithium batteries, and it is needed to develop more efficient electrode materials. Although MgMn O is a promising material for the positive electrode in Mg rechargeable batteries, it usually exhibits poor cyclability. To improve the electrochemical behavior, we have prepared nanoparticles of MgMn Fe O .
View Article and Find Full Text PDFMagnesium-ion batteries could be competitive with lithium-ion batteries, but the reversible intercalation of magnesium in the framework of the host material needs to be verified. A concentration cell was built by using electrodes with different concentrations of magnesium ions in the cubic spinel MgMnO. For this purpose, firstly cations were partially extracted from MgMnO by acid-treatment.
View Article and Find Full Text PDFThe recent introduction of glyme-based solvents has opened new opportunities to characterize graphitic materials as anodes for sodium-ion batteries. We evaluated the electrochemical behaviour of a graphitized carbon nanofiber for the first time. X-ray diffraction, electron paramagnetic resonance and nuclear magnetic resonance allowed the sodium insertion mechanism to be untangled, in which the occurrence of an activation process during the first discharge enhances sodium accessibility to active redox centres at the interlayer space.
View Article and Find Full Text PDFThis study reports on the electrochemical alloying-dealloying properties of Mg₂Sn intermetallic compounds. Sn Mössbauer spectra of β-Sn powder, thermally alloyed cubic-Mg₂Sn, and an intermediate MgSn nominal composition are used as references. The discharge of a Mg/micro-Sn half-cell led to significant changes in the spectra line shape, which is explained by a multiphase mechanism involving the coexistence of c-Mg₂Sn, distorted MgSn, and Mg-doped β-Sn.
View Article and Find Full Text PDFA slight deviation of the stoichiometry has been introduced in NaV(PO) (0 ≤ x ≤ 0.1) samples to determine the effect on the structural and electrochemical behavior as a positive electrode in sodium-ion batteries. X-ray diffraction and XPS results provide evidence for the flexibility of the NASICON framework to allow a limited vanadium superstoichiometry.
View Article and Find Full Text PDFOff-stoichiometric Na V (PO ) samples have been prepared by a sol-gel route. X-ray diffraction and XPS revealed the flexibility of the NASICON framework to accommodate these deviations of the stoichiometry; at least for low x values. X-ray photoelectron spectra evidenced the presence of Na P O impurities.
View Article and Find Full Text PDFIn southern Europe, the intensive use of 2,4-D (2,4-dichlorophenoxyacetic acid) and tribenuron-methyl in cereal crop systems has resulted in the evolution of resistant (R) corn poppy (Papaver rhoeas L.) biotypes. Experiments were conducted to elucidate (1) the resistance response to these two herbicides, (2) the cross-resistant pattern to other synthetic auxins and (3) the physiological basis of the auxin resistance in two R (F-R213 and D-R703) populations.
View Article and Find Full Text PDFNa3V2(PO4)3/C nanocomposites are synthesized by an oleic acid-based surfactant-assisted method. XRD patterns reveal high-purity samples, whereas Raman spectroscopy evidence the highly disordered character of the carbon phase. Electron micrographs show submicron agglomerates with a sea-urchin like morphology consisting of primary nanorods coated by a carbon phase.
View Article and Find Full Text PDFBackground: In the Mediterranean area, Lolium species have evolved resistance to glyphosate after decades of continual use without other alternative chemicals in perennial crops (olive, citrus and vineyards). In recent years, oxyfluorfen alone or mixed with glyphosate and glufosinate has been introduced as a chemical option to control dicot and grass weeds.
Results: Dose-response studies confirmed that three glyphosate-resistant Lolium weed species (L.
Rapistrum rugosum (turnip weed) is a common weed of wheat fields in Iran, which is most often controlled by tribenuron-methyl (TM), a sulfonylurea (SU) belonging to the acetolactate synthase (ALS) inhibiting herbicides group. Several cases of unexplained control failure of R. rugosum by TM have been seen, especially in Golestan province-Iran.
View Article and Find Full Text PDFHerbicides that inhibit acetyl coenzyme A carboxylase (ACCase) are commonly used in Mexico to control weedy grasses such as little seed canarygrass (Phalaris minor). These herbicides are classified into three major families (ariloxyphenoxypropionates (APP), cyclohexanodiones (CHD), and, recently, phenylpyrazolines (PPZ)). In this work, the resistance to ACCase (APP, CHD, and PPZ) inhibiting herbicides was studied in a biotype of Phalaris minor (P.
View Article and Find Full Text PDFA novel design of a sodium-ion cell is proposed based on the use of nanocrystalline thin films composed of transition metal oxides. X-ray diffraction, Raman spectroscopy and electron microscopy were helpful techniques to unveil the microstructural properties of the pristine nanostructured electrodes. Thus, Raman spectroscopy revealed the presence of amorphous NiO, α-Fe2 O3 (hematite) and γ-Fe2 O3 (maghemite).
View Article and Find Full Text PDFAn anatase nanotube array has been prepared with a special morphology: two concentric walls and a very small central cavity. The method used here to achieve the double-wall structure is a single-step anodization process under a voltage ramp. Thanks to this nanostructure, which is equivalent to a fractal electrode, the electrochemical behaviour is improved, and the specific capacity is higher in both lithium and sodium cells due to pseudocapacitance.
View Article and Find Full Text PDFThe preparation of graphene/iron oxyhydroxide hybrid electrode material with very homogeneous distribution and close contact of graphene and amorphous iron oxyhydroxide nanoparticles has been achieved by using high-intensity ultrasonication. Due to the negative charge of the graphene surface, iron ions are attracted toward the surface of dispersed graphene, according to the zeta potential measurements. The anchoring of the FeO(OH) particles to the graphene layers has been revealed by using mainly TEM, XPS and EPR.
View Article and Find Full Text PDFSelf-organized TiO2 nanotubes ranging from amorphous to anatase structures were obtained by anodization procedures and thermal treatments at 500°C. Then electrolytic Li3PO4 films were successfully deposited on the nanotube array by an electrochemical procedure consisting in proton reduction with subsequent increase in pH, hydrogen phosphate dissociation and Li3PO4 deposition on the surface of the cathode. The Li3PO4 polymorph (γ or β) in the deposit could be tailored by modifying the electrodeposition parameters, such as time or current density, as determined by X-ray patterns.
View Article and Find Full Text PDFA sonochemical method has been used to prepare negative electrode materials containing intermetallic nanoparticles and polyacrylonitrile (PAN). The ultrasound irradiation is applied to achieve small particle size. After annealing at 490 °C under Ar-flow, the polymer PAN is partially carbonized and the metallic nanoparticles are surrounded by a carbonaceous matrix.
View Article and Find Full Text PDF