Partial Discharges (PD) in cavities are responsible for the greatest ageing rate in polymeric solid dielectrics due to chemical and physical deterioration mechanisms activated by the charge carriers, Ultra Violet (UV) radiation and local temperature rising during PDs activity. From the above, it is necessary to develop prognosis tools based on PDs measurements as diagnostic quantities in order to infer the time-to-breakdown, life, of solid dielectrics for improving the reliability of electrical assets, especially in current applications where they are subject to great electrical stresses in voltage frequency and magnitude. In this paper, the degradation in polymeric materials induced by PDs in cavities is briefly discussed from a phenomenological point of view, and then it is quantitatively evaluated using a simulation-based approach and a new proposed damage function.
View Article and Find Full Text PDFThe dielectric breakdown of solid polymeric materials is due to the inception and propagation of electrical trees inside them. The remaining useful life of the solid dielectrics could be determined using propagation simulations correlated with non-intrusive measurements such as partial discharges (PD). This paper presents a brief review of the different models for simulating electrical tree propagation in solid dielectrics.
View Article and Find Full Text PDFDuring the last two decades, on-line partial discharge (PD) measurements have been proven as a very efficient test to evaluate the insulation condition of high-voltage (HV) installations in service. Among the different PD-measuring techniques, the non-conventional electromagnetic methods are the most used due to their effectiveness and versatility. However, there are two main difficulties to overcome in on-line PD measurements when these methods are applied: the ambient electric noise and the simultaneous presence of various types of PD or pulse-shaped signals in the HV facility to be evaluated.
View Article and Find Full Text PDFEpoxy resin is one of the most common polymers used as part of the insulation system in key electrical assets such as power transformers and hydrogenerators. Thus, it is necessary to know their main characteristics and to evaluate their condition when subjected to High Voltage (HV). A brief review of epoxy resins' applications as insulating materials is made, their main characteristics as insulating media are given, the improvements with nano-fillers are summarized and the main electric properties required for Partial Discharges (PD) modelling are listed.
View Article and Find Full Text PDFPartial discharges (PD) measurement provides valuable information for the condition assessment of the insulation status of high-voltage (HV) electrical installations. During the last three decades, several PD sensors and measuring techniques have been developed to perform accurate diagnostics when PD measurements are carried out on-site and on-line. For utilities, the most attractive characteristics of on-line measurements are that once the sensors are installed in the grid, the electrical service is uninterrupted and that electrical systems are tested in real operating conditions.
View Article and Find Full Text PDF