Publications by authors named "Ricardo A Wolosiuk"

2-Cys peroxiredoxins (2-Cys Prxs) are ubiquitous enzymes that have been implicated in peroxide-mediated signaling of markedly different processes, such as cancer and photosynthesis. A highly conserved C-terminal extension of eukaryotic homologues modulates both the overoxidation of cysteines and the formation of oligomers. Here, we reveal that the plant counterpart regulates the self-polymerization of 2-Cys Prx triggered by ATP and Mg(2+).

View Article and Find Full Text PDF

2-Cys peroxiredoxins (2-Cys Prxs) are ubiquitous peroxidases with important roles in cellular antioxidant defense and hydrogen peroxide-mediated signaling. Post-translational modifications of conserved cysteines cause the transition from low to high molecular weight oligomers, triggering the functional change from peroxidase to molecular chaperone. However, it remains unclear how non-covalent interactions of 2-Cys Prx with metabolites modulate the quaternary structure.

View Article and Find Full Text PDF

2-Cys peroxiredoxins are peroxidases devoid of prosthetic groups that mediate in the defence against oxidative stress and the peroxide activation of signaling pathways. This dual capacity relies on the high reactivity of the conserved peroxidatic and resolving cysteines, whose modification embraces not only the usual thiol-disulfide exchange but also higher oxidation states of the sulfur atom. These changes are part of a complex system wherein the cooperation with other post-translational modifications - phosphorylation, acetylation - may function as major regulatory mechanisms of the quaternary structure.

View Article and Find Full Text PDF

2-Cys peroxiredoxins (2-Cys Prx) are ubiquitous thiol-containing peroxidases that have been implicated in antioxidant defense and signal transduction. Although their biochemical features have been extensively studied, little is known about the mechanisms that link the redox activity and non-redox processes. Here we report that the concerted action of a nucleoside triphosphate and Mg(2+) on rapeseed 2-Cys Prx reversibly impairs the peroxidase activity and promotes the formation of high molecular mass species.

View Article and Find Full Text PDF

2-Cys peroxiredoxin (2-Cys Prx) is a large group of proteins that participate in cell proliferation, differentiation, apoptosis, and photosynthesis. In the prevailing view, this ubiquitous peroxidase poises the concentration of H2O2 and, in so doing, regulates signal transduction pathways or protects macromolecules against oxidative damage. Here, we describe the first purification of 2-Cys Prx from higher plants and subsequently we show that the native and the recombinant forms of rapeseed leaves stimulate the activity of chloroplast fructose-1,6-bisphosphatase (CFBPase), a key enzyme of the photosynthetic CO2 assimilation.

View Article and Find Full Text PDF

Experiments initiated in the early 1960s on fermentative bacteria led to the discovery of ferredoxin-dependent alpha-ketocarboxylation reactions that were later found to be key to a new cycle for the assimilation of carbon dioxide in photosynthetic bacteria (the reductive carboxylic acid or reverse citric cycle). The latter finding set the stage for the discovery of a regulatory system, the ferredoxin/thioredoxin system, functional in photosynthesis in chloroplasts and oxygen-evolving photosynthetic prokaryotes. The chloroplast research led to a description of the extraplastidic NADP/thioredoxin system that is now known to function in heterotrophic plant processes such as seed germination and self-incompatibility.

View Article and Find Full Text PDF

A high-throughput screening was developed for the detection of phosphatase activity in bacterial colonies. Unlike other methods, the current procedure can be applied to any phosphatase because it uses physiological substrates and detects the compelled product of all phosphatase reactions, that is, orthophosphate. In this method, substrates diffuse from a filter paper across a nitrocellulose membrane to bacterial colonies situated on the opposite face, and then reaction products flow back to the paper.

View Article and Find Full Text PDF