With the ongoing climate and oceanographic change, an increasing number of studies are reporting dramatic population losses caused by thermal extremes in intertidal habitats. Under moderate warming, however, populations can fare better in places where species normally experienced suboptimal temperatures. This article reports the massive recruitment of the barnacle on the Gulf of St.
View Article and Find Full Text PDFRocky intertidal habitats occur worldwide and are mainly characterized by primary space holders such as seaweeds and sessile invertebrates. Some of these organisms are foundation species, as they can form structurally complex stands that host many small invertebrates. The abundance of primary space holders is known to vary along coastlines driven directly or indirectly by environmental variation.
View Article and Find Full Text PDFMussels form extensive beds in rocky intertidal habitats on temperate seashores worldwide. They are foundation species because their beds host many invertebrates. Mussels and their associated species differ taxonomically among biogeographic regions, but all mussel beds exhibit similar structural and functional properties.
View Article and Find Full Text PDFBeta diversity measures the spatial variation in species composition. Because it influences several community attributes, studies are increasingly investigating its drivers. Spatial environmental heterogeneity is a major determinant of beta diversity, but canopy-forming foundation species can locally modify environmental properties.
View Article and Find Full Text PDFPredators can influence prey through direct consumption as well as through non-consumptive effects (NCEs). NCEs usually occur mediated by behavioral changes in the prey upon detection of predator cues. Such changes may involve reduction of feeding with a variety of physiological consequences.
View Article and Find Full Text PDFPredators can exert nonconsumptive effects (NCEs) on prey, which often take place through prey behavioural adjustments to minimise predation risk. As NCEs are widespread in nature, interest is growing to determine whether NCEs on a prey species can indirectly influence several other species simultaneously, thus leading to changes in community structure. In this study, we investigate whether a predator can exert NCEs on a foundation species and indirectly affect community structure.
View Article and Find Full Text PDFThis data set describes the abundance of 50 invertebrate taxa found in intertidal mussel beds along the Atlantic Canadian coast. This information resulted from a regional-scale study that investigated the effects of wave exposure on the richness and composition of invertebrate assemblages from intertidal mussel beds. Abundance data are provided for taxa representing the Annelida, Arthropoda, Bryozoa, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Nemertea, and Platyhelminthes.
View Article and Find Full Text PDFBenthic fauna refers to all fauna that live in or on the seafloor, which researchers typically divide into size classes meiobenthos (32/64 µm-0.5/1 mm), macrobenthos (250 µm-1 cm), and megabenthos (>1 cm). Benthic fauna play important roles in bioturbation activity, mineralization of organic matter, and in marine food webs.
View Article and Find Full Text PDFBenthic-pelagic coupling refers to the ecological relationships between benthic and pelagic environments. Studying such links is particularly useful to understand biological variation in intertidal organisms along marine coasts. Filter-feeding invertebrates are ecologically important on marine rocky shores, so they have often been used to investigate benthic-pelagic coupling.
View Article and Find Full Text PDFThe abundant-centre hypothesis (ACH) predicts that the density of a species should peak at its distribution centre and decrease similarly towards distribution margins. The ACH has been deduced from a theory that postulates that environmental conditions should be most favourable for a species at the centre of its distribution. This idealised density pattern, however, has been supported by limited field studies, as natural patterns are often more complex.
View Article and Find Full Text PDFRecruitment is a key demographic process for population persistence. This paper focuses on barnacle () recruitment. In rocky intertidal habitats from the Gulf of St.
View Article and Find Full Text PDFOn the Gulf of St. Lawrence coast of Nova Scotia (Canada), recruitment of the barnacle occurs in May and June. Every year in June between 2005 and 2016, we recorded recruit density for this barnacle at the same wave-exposed rocky intertidal location on this coast.
View Article and Find Full Text PDFRecent studies have shown that predator chemical cues can limit prey demographic rates such as recruitment. For instance, barnacle pelagic larvae reduce settlement where predatory dogwhelk cues are detected, thereby limiting benthic recruitment. However, adult barnacles attract conspecific larvae through chemical and visual cues, aiding larvae to find suitable habitat for development.
View Article and Find Full Text PDFWe investigated the nonconsumptive effects (NCEs) of predatory dogwhelks (Nucella lapillus) on intertidal barnacle (Semibalanus balanoides) recruitment through field experiments on the Gulf of St. Lawrence coast and the Atlantic coast of Nova Scotia, Canada. We studied the recruitment seasons (May-June) of 2011 and 2013.
View Article and Find Full Text PDFIn the early spring of 2014, an unusually large amount of sea ice drifted from the Gulf of St. Lawrence, where it had been produced, towards the open Atlantic Ocean through the Cabot Strait, between Nova Scotia and Newfoundland, Canada. In early April, significant amounts of drift ice reached the Atlantic coast of mainland Nova Scotia.
View Article and Find Full Text PDFIn the spring of 2014, abundant sea ice that drifted out of the Gulf of St. Lawrence caused extensive disturbance in rocky intertidal habitats on the northern Atlantic coast of mainland Nova Scotia, Canada. To monitor recovery of intertidal communities, we surveyed two wave-exposed locations in the early summer of 2014.
View Article and Find Full Text PDFIn rocky intertidal habitats, the pronounced increase in environmental stress from low to high elevations greatly affects community structure, that is, the combined measure of species identity and their relative abundance. Recent studies have shown that ecological variation also occurs along the coastline at a variety of spatial scales. Little is known, however, on how vertical variation compares with horizontal variation measured at increasing spatial scales (in terms of sampling interval).
View Article and Find Full Text PDFOne of the most studied macroecological patterns is the interspecific abundance-occupancy relationship, which relates species distribution and abundance across space. Interspecific relationships between temporal distribution and abundance, however, remain largely unexplored. Using data for a natural assemblage of tabanid flies measured daily during spring and summer in Nova Scotia, we found that temporal occurrence (proportion of sampling dates in which a species occurred in an experimental trap) was positively related to temporal mean abundance (number of individuals collected for a species during the study period divided by the total number of sampling dates).
View Article and Find Full Text PDFUnderstanding epiphyte distribution in coastal communities is important because these organisms affect many others directly or indirectly. Yet, their distribution has been considerably less studied than that of their hosts and other primary-space holders. Identifying major sources of variation in epiphyte abundance is thus still a need.
View Article and Find Full Text PDFAscophyllum nodosum (L.) Le Jol. forms extensive beds in wave-sheltered, rocky intertidal habitats on the northwestern Atlantic coast.
View Article and Find Full Text PDF