Publications by authors named "Ricarda Jost"

Cannabis sativa L. is one of the oldest domesticated crops. Hemp-type cultivars, which predominantly produce non-intoxicating cannabidiol (CBD), have been selected for their fast growth, seed, and fibre production, while drug-type chemovars were bred for high accumulation of tetrahydrocannabinol (THC).

View Article and Find Full Text PDF

Cannabis sativa L., one of the oldest cultivated crops, has a complex domestication history due to its diverse uses for fibre, seed, oil, and drugs, and its wide geographic distribution. This review explores how human selection has shaped the biology of hemp and drug-type Cannabis, focusing on acquisition and utilization of nitrogen and phosphorus, and how resulting changes in source-sink relations shape their contrasting phenology.

View Article and Find Full Text PDF

The plant macronutrient phosphorus is a scarce resource and plant-available phosphate is limiting in most soil types. Generally, a gene regulatory module called the phosphate starvation response (PSR) enables efficient phosphate acquisition by roots and translocation to other organs. Plants growing on moderate to nutrient-rich soils need to co-ordinate availability of different nutrients and repress the highly efficient PSR to adjust phosphate acquisition to the availability of other macro- and micronutrients, and in particular nitrogen.

View Article and Find Full Text PDF

Flooding causes severe crop losses in many parts of the world. Genetic variation in flooding tolerance exists in many species; however, there are few examples for the identification of tolerance genes and their underlying function. We conducted a genome-wide association study (GWAS) in 387 Arabidopsis (Arabidopsis thaliana) accessions.

View Article and Find Full Text PDF

Phosphorus (P) is an essential element for plant growth often limiting agroecosystems. To identify genetic determinants of performance under variable phosphate (Pi) supply, we conducted genome-wide association studies on five highly predictive Pi starvation response traits in 200 Arabidopsis (Arabidopsis thaliana) accessions. Pi concentration in Pi-limited organs had the strongest, and primary root length had the weakest genetic component.

View Article and Find Full Text PDF

Phosphorus (P) is an essential macronutrient for all living organisms and limits plant growth. Four proteins comprising a single SYG1/Pho81/XPR1 (SPX) domain, SPX1 to SPX4, are putative phosphate-dependent inhibitors of Arabidopsis () PHOSPHATE STARVATION RESPONSE1 (PHR1), the master transcriptional activator of phosphate starvation responses. This work demonstrated that SPX4 functions as a negative regulator not only of PHR1-dependent but also of PHR1-independent responses in P-replete plants.

View Article and Find Full Text PDF

Phosphatidylcholine (PC) is a major membrane phospholipid and a precursor for major signaling molecules. Understanding its synthesis is important for improving plant growth, nutritional value, and resistance to stress. PC synthesis is complex, involving several interconnected pathways, one of which proceeds from serine-derived phosphoethanolamine to form phosphocholine through three sequential phospho-base methylations catalyzed by phosphoethanolamine -methyltransferases (PEAMTs).

View Article and Find Full Text PDF

Hakea prostrata (Proteaceae) has evolved in extremely phosphorus (P)-impoverished habitats. Unlike species that evolved in P-richer environments, it tightly controls its nitrogen (N) acquisition, matching its low protein concentration, and thus limiting its P requirement for ribosomal RNA (rRNA). Protein is a major sink for sulfur (S), but the link between low protein concentrations and S metabolism in H.

View Article and Find Full Text PDF

Cellular specialization in abiotic stress responses is an important regulatory feature driving plant acclimation. Our in silico approach of iterative coexpression, interaction, and enrichment analyses predicted root cell-specific regulators of phosphate starvation response networks in Arabidopsis (). This included three uncharacterized genes termed Phosphate starvation-induced gene interacting Root Cell Enriched (, , and ).

View Article and Find Full Text PDF

Hakea prostrata (Proteaceae) has evolved in an extremely phosphorus (P)-limited environment. This species exhibits an exceptionally low ribosomal RNA (rRNA) and low protein and nitrogen (N) concentration in its leaves. Little is known about the N requirement of this species and its link to P metabolism, despite this being the key to understanding how it functions with a minimal P budget.

View Article and Find Full Text PDF

Adaptation of Lupinus angustifolius (narrow-leafed lupin) to cropping in southern Australian and northern Europe was transformed by a dominant mutation (Ku) that removed vernalization requirement for flowering. The Ku mutation is now widely used in lupin breeding to confer early flowering and maturity. We report here the identity of the Ku mutation.

View Article and Find Full Text PDF

Quantitative Reverse Transcription PCR (qRT-PCR) is currently one of the most popular, high-throughput and sensitive technologies available for quantifying gene expression. Its accurate application depends heavily upon normalisation of gene-of-interest data with reference genes that are uniformly expressed under experimental conditions. The aim of this study was to provide the first validation of reference genes for Lupinus angustifolius (narrow-leafed lupin, a significant grain legume crop) using a selection of seven genes previously trialed as reference genes for the model legume, Medicago truncatula.

View Article and Find Full Text PDF

Many plant species adapted to P-impoverished soils, including jarrah (Eucalyptus marginata), develop toxicity symptoms when exposed to high doses of phosphate (Pi) and its analogs such as phosphite (Phi) and arsenate (AsV). The present study was undertaken to investigate the effects of fungal symbionts Scutellospora calospora, Scleroderma sp., and Austroboletus occidentalis on the response of jarrah to highly toxic pulses (1.

View Article and Find Full Text PDF

Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates.

View Article and Find Full Text PDF

Background: In plants, the uptake from soil and intercellular transport of inorganic phosphate (Pi) is mediated by the PHT1 family of membrane-spanning proton : Pi symporters. The Arabidopsis thaliana AtPHT1 gene family comprises nine putative high-affinity Pi transporters. While AtPHT1;1 to AtPHT1;4 are involved in Pi acquisition from the rhizosphere, the role of the remaining transporters is less clear.

View Article and Find Full Text PDF

Soil phosphate represents the only source of phosphorus for plants and, consequently, is its entry into the trophic chain. This major component of nucleic acids, phospholipids, and energy currency of the cell (ATP) can limit plant growth because of its low mobility in soil. As a result, root responses to low phosphate favor the exploration of the shallower part of the soil, where phosphate tends to be more abundant, a strategy described as topsoil foraging.

View Article and Find Full Text PDF

Hakea prostrata (Proteaceae) is adapted to severely phosphorus-impoverished soils and extensively replaces phospholipids during leaf development. We investigated how polar lipid profiles change during leaf development and in response to external phosphate supply. Leaf size was unaffected by a moderate increase in phosphate supply.

View Article and Find Full Text PDF

Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat.

View Article and Find Full Text PDF

• Most terrestrial plants form mutually beneficial symbioses with specific soil-borne fungi known as mycorrhiza. In a typical mycorrhizal association, fungal hyphae colonize plant roots, explore the soil beyond the rhizosphere and provide host plants with nutrients that might be chemically or physically inaccessible to root systems. • Here, we combined nutritional, radioisotopic ((33)P) and genetic approaches to describe a plant growth promoting symbiosis between the basidiomycete fungus Austroboletus occidentalis and jarrah (Eucalyptus marginata), which has quite different characteristics.

View Article and Find Full Text PDF

Recent studies have identified genotypic variation in phosphorus (P) efficiency, but rarely have the underlying mechanisms been described at the molecular level. We demonstrate that the highly P-efficient wheat (Triticum aestivum L.) cultivar Chinese 80-55 maintains higher inorganic phosphate (Pi ) concentrations in all organs upon Pi withdrawal in combination with higher Pi acquisition in the presence of Pi when compared with the less-efficient cultivar Machete.

View Article and Find Full Text PDF

Phosphite (H₂PO⁻₃) induces a range of physiological and developmental responses in plants by disturbing the homeostasis of the macronutrient phosphate. Because of its close structural resemblance to phosphate, phosphite impairs the sensing, membrane transport, and subcellular compartmentation of phosphate. In addition, phosphite induces plant defence responses by an as yet unknown mode of action.

View Article and Find Full Text PDF