Publications by authors named "Ribi H"

Streptavidin forms two-dimensional crystals when specifically bound to layers of biotinylated lipids at the air/water interface. The three-dimensional structure of streptavidin determined from the crystals by electron crystallography corresponds well with the structure determined by x-ray crystallography. Comparison of the electron and x-ray crystallographic structures reveals the occurrence of free biotin-binding sites on the surface of the two-dimensional crystals facing the aqueous solution.

View Article and Find Full Text PDF

Thin sheets of Ac-Tm-Tn paracrystals were prepared in the presence of high concentration of Ca2+ ion and three-dimensional image analysis was performed. The optical diffraction pattern of an electron micrograph showed spots up to 1/1.6 nm-1 in the radial direction and up to 1/2.

View Article and Find Full Text PDF

Escherichia coli RNA polymerase holoenzyme forms two-dimensional crystals when adsorbed to positively charged lipid layers at the air/water interface. Adsorption of the protein is driven by electrostatic interactions between the positively charged lipid surface and the polymerase molecule, which has a net negative charge. Crystallization is dependent on the adsorption and concentration of RNA polymerase on fluid lipid surfaces.

View Article and Find Full Text PDF

Two-dimensional crystals of cholera toxin bound to receptors in a lipid membrane give diffraction extending to 15 A resolution. Three-dimensional structure determination reveals a ring of five B subunits on the membrane surface, with one-third of the A subunit occupying the center of the ring. The remaining mass of the A subunit appears to penetrate the hydrophobic interior of the membrane.

View Article and Find Full Text PDF

Atomic force microscope images of polymerized monolayers of n-(2-aminoethyl)-10,12-tricosadiynamide revealed parallel rows of molecules with a side-by-side spacing of approximately equal to 0.5 nanometer. Forces used for imaging (10(-8) newton) had no observable effect on the polymer strands.

View Article and Find Full Text PDF

The B1 subunit of ribonucleotide reductase formed two-dimensional crystals when bound to and effector nucleotide linked to lipids in planar layers at the air/water interface. The effector lipid consisted of dATP coupled through the gamma-phosphoryl group and an epsilon-aminocaproyl linker to phosphatidylethanolamine. Two-dimensional crystals of B1 reductase, like those of antibodies and cholera toxin obtained previously, formed under physiologic conditions of pH and ionic strength, with no precipitant added to the solution.

View Article and Find Full Text PDF

The B subunit of cholera toxin forms two-dimensional crystals when bound to its membrane receptor, ganglioside GM1, in phospholipid layers. A rectangular crystal lattice gives diffraction extending to 15-A resolution in negative stain, and image-processing of electron micrographs reveals a ring of five protein densities. The diameter of the central hole and the outer diameter of the ring are about 20 and 60 A, respectively.

View Article and Find Full Text PDF

Endotoxin isolated from Re mutants of Salmonella typhimurium or Salmonella minnesota and consisting only of 3-deoxy-D-mannooctulosonic acid (KDO) and lipid A synergistically enhances the ability of mycobacterial cell wall skeleton (CWS) to regress transplantable, line-10 tumor (hepatocellular carcinoma) in syngeneic guinea pigs. Tumor regression is rapid, and systemic tumor immunity concomitantly develops when as little as 50 micrograms of each of these two components is combined and injected intralesionally. Selective removal of KDO from endotoxin yields diphosphoryl lipid A, which retains its toxic properties.

View Article and Find Full Text PDF