Publications by authors named "Ribelles J"

This study investigates the effect of electroactivity and electrical charge distribution on the biological response of human bone marrow stem cells (hBMSCs) cultured in monolayer on flat poly(vinylidene fluoride), PVDF, substrates. Differences in cell behaviour, including proliferation, expression of multipotency markers CD90, CD105 and CD73, and expression of genes characteristic of different mesenchymal lineages, were observed both during expansion in basal medium before reaching confluence and in confluent cultures in osteogenic induction medium. The crystallisation of PVDF in the electrically neutral α-phase or in the electroactive phase β, both unpoled and poled, has been found to have an important influence on the biological response.

View Article and Find Full Text PDF

Biocompatible and antibacterial multi-layer coatings of hydroxyapatite (HA)-Ag/SiO/TiN/Ti were obtained on the Ti-6Al-4V alloy, by means of the magnetron sputtering technique. During characterization of the coatings, the chemical composition was evaluated by energy dispersive X-ray spectroscopy and the phase analysis was carried out by X-ray diffraction. The morphology of the coatings was observed by field emission scanning electron microscopy, while transmission electron microscopy was used to appreciate their structure.

View Article and Find Full Text PDF

Electrical stimulation (ES) has provided enhanced chondrogenesis of mesenchymal stem cells (MSCs) cultured in micro-mass without the addition of exogenous growth factors. In this study, we demonstrate for the first time that ES of MSCs encapsulated in an injectable hyaluronic acid (HA) - gelatin (GEL) mixture enhances the chondrogenic potential of the hydrogel. Samples were stimulated for 21 days with 10 mV/cm at 60 kHz, applied for 30 min every 6 h a day.

View Article and Find Full Text PDF

Dental implantology is still an expanding field of scientific study because of the number of people that receive dental therapies throughout their lives worldwide. Recovery times associated to dental surgery are still long and demand strategies to improve integration of metallic devices with hard tissues. In this work, an in vitro ceramic coating is proposed to improve and accelerate osseointegration of titanium surfaces conceived to be used as dental implants or hip or knee prosthesis, shaped either as dishes or screws.

View Article and Find Full Text PDF

Unlabelled: Chondrogenesis of dedifferentiated chondrocytes and mesenchymal stem cells is influenced not only by soluble molecules like growth factors, but also by the cell environment itself. The latter is achieved through both mechanical cues - which act as stimulation factor and influences nutrient transport - and adhesion to extracellular matrix cues - which determine cell shape. Although the effects of soluble molecules and cell environment have been intensively addressed, few observations and conclusions about the interaction between the two have been achieved.

View Article and Find Full Text PDF

Water absorption in chitosan rapidly increases when the deacetylation degree decreases between 85 and 45%. This seems to contradict the fact that water absorption in chitin is much lower than that of chitosan. The aim of this paper is to understand this feature by measuring the main parameters affecting equilibrium water content.

View Article and Find Full Text PDF

Chitosan-silica porous hybrids were prepared by a novel strategy in order to improve the mechanical properties of chitosan (CHT) in the hydrogel state. The inorganic silica phase was introduced by sol-gel reactions in acidic medium inside the pores of already prepared porous scaffolds. In order to make the scaffolds insoluble in acidic media chitosan was cross-linked by genipin (GEN) with an optimum GEN concentration of 3.

View Article and Find Full Text PDF

Polycaprolactone/silica microporous hybrid membranes were produced in two steps: A microporous polycaprolactone membrane with an interconnected porosity of 80% was obtained via a freeze extraction procedure, then silica was formed by a sol-gel reaction inside the micropores using tetraethyl orthosilicate, TEOS, as silica precursor. It is shown that silica forms a thin coating layer homogeneously distributed over the pore walls when sol-gel reaction is catalyzed by hydrochloric acid, while it forms submicron spherical particles when using basic catalyzer. Some physical properties and the viability and osteoblastic differentiation of bone marrow rat mesenchymal stem cells cultured on pure and hybrid membranes were studied.

View Article and Find Full Text PDF

Polycaprolactone scaffolds modified with cross-linked hyaluronic acid were prepared in order to establish whether a more hydrophilic and biomimetic microenvironment benefits the progenitor cells arriving from bone marrow in a cell-free tissue-engineering approach. The polycaprolactone and polycaprolactone/hyaluronic acid scaffolds were characterized in terms of morphology and water absorption capacity. The polycaprolactone and polycaprolactone/hyaluronic acid samples were implanted in a chondral defect in rabbits; bleeding of the subchondral bone was provoked to generate a spontaneous healing response.

View Article and Find Full Text PDF

The aim of this paper is to quantify the adhered fibronectin (FN; by adsorption and/or grafting) and the exposure of its cell adhesive motifs (RGD and FNIII7-10) on poly(ethyl acrylate) (PEA) copolymers whose chemical composition has been designed to increase wettability and to introduce acid functional groups. FN was adsorbed to PEA, poly(ethyl acrylate-co-hydroxyethyl acrylate), poly(ethyl acrylate-co-acrylic acid), and poly(ethyl acrylate-co-methacrylic acid) copolymers, and covalently cross-linked to poly(ethyl acrylate-co-acrylic acid) and poly(ethyl acrylate-co-methacrylic acid) copolymers. Amount of adhered FN and exhibition of RGD and FNIII7- 10 fragments involved in cell adhesion were quantified with enzyme-linked immunosorbent assay tests.

View Article and Find Full Text PDF

The aim of this work is to compare the effect of hydroxyapatite (HAp) or bioglass (BG) nanoparticles in a polycaprolactone composite scaffold aimed to bone regeneration. To allow a comparison of the influence of both types of fillers, scaffolds made of PCL or composites containing up to 20 % by weight HAp or BG were obtained. Scaffolds showed acceptable mechanical properties for its use and high interconnected porosity apt for cellular colonization.

View Article and Find Full Text PDF

Scaffolds for cartilage tissue engineering should promote both adequate biomechanical environment and chondrogenic stimulation. Hyaluronic acid (HA) has been used in cartilage engineering for its chondrogenic and chondroprotective properties, nevertheless its mechanical properties are limited. Influence of HA microstructure in chondrocyte response has not been addressed yet.

View Article and Find Full Text PDF

The aim of this study was to develop a biocompatible monolayer substrate based on fibrin and chitosan for in vitro culture of chondrocytes. Fibrin-chitosan composite substrates combined the proved cell adhesion properties of fibrin with the hydrophilicity and poor adhesion capacity of chitosan. Chitosan microspheres were produced by coacervation method, agglomerated within a fibrin network and subsequently crosslinked with genipin.

View Article and Find Full Text PDF

Scaffolds with aligned channels based on acrylate copolymers, which had previously demonstrated good compatibility with neural progenitor cells were studied as colonizable structures both in vitro with neural progenitor cells and in vivo, implanted without cells in two different locations, in the cortical plate of adult rat brains and close to the subventricular zone. In vitro, neuroprogenitors colonize the scaffold and differentiate into neurons and glia within its channels. When implanted in vivo immunohistochemical analysis by confocal microscopy for neural and endothelial cells markers demonstrated that the scaffolds maintained continuity with the surrounding neural tissue and were colonized by GFAP-positive cells and, in the case of scaffolds implanted in contact with the subventricular zone, by neurons.

View Article and Find Full Text PDF

Two series of 3D scaffolds based on ε-caprolactone were synthesized. The pore size and architecture (spherical interconnected pores) was the same in all the scaffolds. In one of the series of scaffolds, made of pure ε-polycaprolactone, the volume fraction of pores varied between 60% and 85% with the main consequence of varying the interconnectivity between pores since the pore size was kept constant.

View Article and Find Full Text PDF

Bone Marrow mesenchymal stem cells can be induced to differentiate into osteoblasts to regenerate damaged bone tissue using tissue engineering techniques. In this study, we examine the use of chitosan scaffolds with double pore structure prepared by an innovative method that combines freeze gelation (that produces micropores) and particle leaching out technique (that produces interconnected spherical macropores) seeking to enhance the osteogenic differentiation of goat bone marrow stromal cells (GBMSCs). The double pore architecture of the scaffold was characterized by scanning electron microscopy (SEM), microcomputed tomography and confocal laser scanning microscopy.

View Article and Find Full Text PDF

Biomaterials based on the hydrophobic homopolymer poly(ethyl acrylate), PEA, and its copolymers with hydroxyethyl acrylate, p(EA-co-HEA) and methacrylic acid, p(EA-co-MAAc) were prepared as polymeric scaffolds with interconnected pores of 90 microns and tested in vitro as culture substrates and compared for their impact on the differentiation of neural stem cells (NSC) obtained from the subventricular zone (SVZ) of postnatal rats and human endothelial cells (HUVEC). Immunocytochemical staining assay for specific markers show that p(EA-co-MAAc) scaffolds were suitable substrates to promote cell attachment and differentiation of adult NSC and HUVEC cells.

View Article and Find Full Text PDF

Background: Cartilage tissue engineering using synthetic scaffolds allows maintaining mechanical integrity and withstanding stress loads in the body, as well as providing a temporary substrate to which transplanted cells can adhere.

Purpose: This study evaluates the use of polycaprolactone (PCL) scaffolds for the regeneration of articular cartilage in a rabbit model.

Study Design: Controlled laboratory study.

View Article and Find Full Text PDF

We have synthesized methacrylate-endcapped caprolactone networks with tailored water sorption ability, poly(CLMA-co-HEA), in the form of three-dimensional (3D) scaffolds with the same architecture but exhibiting different hydrophilicity character (x(HEA)=0, 0.3, 0.5), and we investigated the interaction of goat bone marrow stromal cells (GBMSCs) with such structures.

View Article and Find Full Text PDF

Detailed knowledge of the porous architecture of synthetic scaffolds for tissue engineering, their mechanical properties, and their interrelationship was obtained in a nondestructive manner. Image analysis of microcomputed tomography (microCT) sections of different scaffolds was done. The three-dimensional (3D) reconstruction of the scaffold allows one to quantify scaffold porosity, including pore size, pore distribution, and struts' thickness.

View Article and Find Full Text PDF

The use of chitosan microparticles as injectable carriers for cell transplantation represents a promising alternative to avoid the drawbacks of the implantation of other forms of three-dimensional (3D) scaffolds seeded with cells. In this study, a 3D construct is obtained in vitro by combining chitosan microparticles crosslinked with genipin and goat bone marrow stromal cells (GBMCs). Cell viability and the morphology of GBMCs were evaluated after culture for 7 and 14 days.

View Article and Find Full Text PDF

Methacrylate-endcapped caprolactone (CLMA) networks were synthesized and copolymerized with 2-hydroxyethyl acrylate (HEA) seeking to tailor the hydrophilicity of the system. The resulting structure of the copolymer network is investigated by differential scanning calorimetry, thermogravimetry, and Fourier transform infrared spectroscopy. The dynamic swelling behavior and the equilibrium water sorption is measured and correlated with the microstructure.

View Article and Find Full Text PDF

Polymer scaffolds are obtained in which the geometric characteristics (pore size, connectivity, porosity) and the physico-chemical properties of the resulting material can be controlled in an independent way. The interconnected porous structure was obtained using a template of sintered PMMA microspheres of controlled size. Copolymerization of hydrophobic ethyl acrylate and hydrophilic hydroxyethyl methacrylate comonomers took place in the free space of the template, different comonomer ratio gave rise to different hydrophilicity degrees of the material keeping the same pore architecture.

View Article and Find Full Text PDF