Publications by authors named "Ribeiro-Machado C"

Intervertebral disc (IVD) degeneration and herniation is a leading cause of disability globally and a large unmet clinical need. No efficient non-surgical therapy is available, and there is an urgency for minimally invasive therapies capable of restoring tissue function. IVD spontaneous hernia regression following conservative treatment is a clinically relevant phenomenon that has been linked to an inflammatory response.

View Article and Find Full Text PDF

Background: The vast and promising class of long non-coding RNAs (lncRNAs) has been under investigation for distinct therapeutic applications. Nevertheless, their role as molecular drivers of bone regeneration remains poorly studied. The lncRNA H19 mediates osteogenic differentiation of Mesenchymal Stem/Stromal Cells (MSCs) through the control of intracellular pathways.

View Article and Find Full Text PDF

With the lack of effective treatments for low back pain, the use of extracellular matrix (ECM)-based biomaterials have emerged with undeniable promise for IVD regeneration. Decellularized scaffolds can recreate an ideal microenvironment inducing tissue remodeling and repair. In particular, fetal tissues have a superior regenerative capacity given their ECM composition.

View Article and Find Full Text PDF

The host inflammatory response to biomaterials conditions their capacity to promote tissue repair, and macrophage polarization shift from M1 to M2 is determinant in this process. Previous work showed that extracts of a combination between fibrinogen and metallic magnesium materials acted synergistically to reduce macrophage inflammatory phenotype. The hypothesis underlying the current work was that the ability of magnesium-modified fibrinogen scaffolds to modulate macrophage phenotype depends on the concentration of magnesium.

View Article and Find Full Text PDF

Background: Intervertebral disc (IVD) herniation is characterized by annulus fibrosus failure (AF) in containing the nucleus pulposus (NP). IVD herniation involves cellular and extracellular matrix (ECM) alterations that have been associated with tissue fibrosis, although still poorly investigated.

Methods: Here, fibrotic alterations in human AF were evaluated, by characterizing the herniated ECM.

View Article and Find Full Text PDF

Multiple myeloma (MM) is the second most frequent hematological disease and can cause skeletal osteolytic lesions. This study aims to evaluate the expression of circulating microRNAs (miRNAs) in MM patients and to correlate those levels with clinicopathological features, including bone lesions. A panel of miRNAs associated with MM onset and progression, or with bone remodeling, was analyzed in the plasma of 82 subjects (47 MM patients; 35 healthy controls).

View Article and Find Full Text PDF

Intervertebral disc (IVD) degeneration involves a complex cascade of events, including degradation of the native extracellular matrix, loss of water content, and decreased cell numbers. Cell recruitment strategies for the IVD have been increasingly explored, aiming to recruit either endogenous or transplanted cells. This study evaluates the IVD therapeutic potential of a chemoattractant delivery system (HAPSDF5) that combines a hyaluronan-based thermoreversible hydrogel (HAP) and the chemokine stromal cell derived factor-1 (SDF-1).

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSCs) have been increasingly used in clinical trials for low-back pain (LBP) and intervertebral disc (IVD) degeneration with promising results. Their action mechanisms are not fully understood, but they reduce IVD pro-inflammatory markers in a pro-inflammatory/degenerative IVD microenvironment. In this study the therapeutic potential of the MSC secretome, as an alternative cell-free approach for treating degenerated IVDs, was examined.

View Article and Find Full Text PDF

Inflammation is central in intervertebral disc (IVD) degeneration/regeneration mechanisms, and its balance is crucial to maintain tissue homeostasis. This work investigates the modulation of local and systemic inflammatory response associated with IVD degeneration/herniation by administration of PRO- versus ANTI-inflammatory treatments. Chitosan/poly-γ-glutamic acid nanocomplexes, known as pro-inflammatory (PRO), and soluble diclofenac, a non-steroidal anti-inflammatory drug (ANTI), were intradiscally administered in a rat IVD injury model, 24 h after lesion.

View Article and Find Full Text PDF

Strontium (Sr) is known to stimulate osteogenesis, while inhibiting osteoclastogenesis, thus encouraging research on its application as a therapeutic agent for bone repair/regeneration. It has been suggested that it may possess immunomodulatory properties, which might act synergistically in bone repair/regeneration processes. To further explore this hypothesis we have designed a Sr-hybrid system composed of an in situ forming Sr-crosslinked RGD-alginate hydrogel reinforced with Sr-doped hydroxyapatite (HAp) microspheres and studied its in vitro osteoinductive behaviour and in vivo inflammatory response.

View Article and Find Full Text PDF

Bone injury healing is an orchestrated process that starts with an inflammatory phase followed by repair and remodelling of the bone defect. The initial inflammation is characterized by local changes in immune cell populations and molecular mediators, including microRNAs (miRNAs). However, the systemic response to bone injury remains largely uncharacterized.

View Article and Find Full Text PDF

Strontium (Sr) has been described as having beneficial influence in bone strength and architecture. However, negative systemic effects have been reported on oral administration of Sr ranelate, leading to strict restrictions in clinical application. We hypothesized that local delivery of Sr improves osteogenesis without eliciting detrimental side effects.

View Article and Find Full Text PDF

Intervertebral disc (IVD) degeneration is characterized by significant biochemical and histomorphological alterations, such as loss of extracellular matrix (ECM) integrity, by abnormal synthesis of ECM main components, resultant from altered anabolic/catabolic cell activities and cell death. Mesenchymal Stem/Stromal Cell (MSC) migration towards degenerated IVD may represent a viable strategy to promote tissue repair/regeneration. Here, human MSCs (hMSCs) were seeded on top of cartilaginous endplates (CEP) of nucleotomized IVDs of bovine origin and cultured ex vivo up to 3 weeks.

View Article and Find Full Text PDF