Publications by authors named "Ribai Yan"

Breast cancer is one of the threatening malignant tumors with the highest mortality and incidence rate over the world. There are a lot of breast cancer patients dying every year due to the lack of effective and safe therapeutic drugs. Therefore, it is highly necessary to develop more effective drugs to overcome breast cancer.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a promising cancer treatment. This study investigated the antitumor effects and mechanisms of a novel photosensitizer meso-5-[ρ-diethylene triamine pentaacetic acid-aminophenyl]-10,15,20-triphenyl-porphyrin (DTP) mediated PDT (DTP-PDT). Cell viability, reactive oxygen species (ROS), and apoptosis were measured with a Cell Counting Kit-8 assay, DCFH-DA fluorescent probe, and Hoechst staining, respectively.

View Article and Find Full Text PDF

For the purpose of seeking new antibiotics, researchers usually modify the already-existing ones. However, this strategy has been extensively used and is close to its limits, especially in the case of aminoglycosides, and it is difficult to find a proper aminoglycoside antibiotic for novel modification. In this paper, we reported the design, synthesis, and evaluation of a series of 5-epi-neamine derivatives based on the structural information of bacterial 16S RNA A-site binding with aminoglycosides.

View Article and Find Full Text PDF

Chemical modification of old drugs is an important way to obtain new ones, and it has been widely used in developing new aminoglycoside antibiotics. However, many of the previous modifying strategies seem arbitrary for their lack of support from structural biological detail. In this paper, based on the structural information of aminoglycoside and its drug target, we firstly analyzed the reason that some 2'--acetylated products of aminoglycosides caused by aminoglycoside-modifying enzyme AAC(2') can partially retain activity, and then we designed, synthesized, and evaluated a series of 2'-modified kanamycin A derivatives.

View Article and Find Full Text PDF

Mantle-cell lymphoma (MCL) remains incurable despite numerous therapeutic advances. OSU-2S, a novel nonimmunosuppressive FTY720 (Fingolimod) derivative, exhibits potent cytotoxicity in MCL cell lines and primary cells. OSU-2S increased the surface expression of CD74, a therapeutic antibody target in MCL cells.

View Article and Find Full Text PDF

Previously, we reported that Akt inactivation by γ-tocopherol (2) in PTEN-negative prostate cancer cells resulted from its unique ability to facilitate membrane co-localization of Akt and PHLPP1 (PH domain leucine-rich repeat protein phosphatase isoform 1), a Ser473-specific Akt phosphatase, through pleckstrin homology (PH) domain binding. This finding provided a basis for exploiting 2 to develop a novel class of PHLPP1-targeted Akt inhibitors. Here, we used 3 (γ-VE5), a side chain-truncated 2 derivative, as a scaffold for lead optimization.

View Article and Find Full Text PDF

OSU-2S is a novel anti-cancer and immune modulatory agent designed specifically to avert the immunosuppressive effects and related toxicities observed in clinical studies with its predecessor analog, FTY720. To characterize its preclinical pharmacokinetics, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of OSU-2S in mouse plasma. Ethyl acetate extraction of samples containing OSU-2S and the internal standard, Sph-17, was followed by separation with a 6min gradient (water/0.

View Article and Find Full Text PDF

Gemcitabine resistance remains a significant clinical challenge. Here, we used a novel glucose transporter (Glut) inhibitor, CG-5, as a proof-of-concept compound to investigate the therapeutic utility of targeting the Warburg effect to overcome gemcitabine resistance in pancreatic cancer. The effects of gemcitabine and/or CG-5 on viability, survival, glucose uptake and DNA damage were evaluated in gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cell lines.

View Article and Find Full Text PDF

On the basis of our finding that the antitumor effect of 5-{4-[(1-methylcyclohexyl)methoxy]benzyl}thiazolidine-2,4-dione, a thiazolidinedione peroxisome proliferator-activated receptor (PPAR)γ agonist, was, in part, attributable to its ability to block glucose uptake independently of PPARγ, we used its PPARγ-inactive analogue to develop a novel class of glucose transporter (GLUT) inhibitors. This lead optimization led to compound 30 {5-(4-hydroxy-3-trifluoromethylbenzylidene)-3-[4,4,4-trifluoro-2-methyl-2-(2,2,2-trifluoroethyl)butyl]thiazolidine-2,4-dione} as the optimal agent, which exhibited high antitumor potency through the suppression of glucose uptake (IC(50), 2.5 μM), while not cytotoxic to prostate and mammary epithelial cells.

View Article and Find Full Text PDF

Based on the structural information of biomacromolecule-aminoglycoside complexes, a series of kanamycin B analogues were rationally designed and synthesized. A convenient approach to the construction of kanamycin derivatives, in which the C4'-position on ring I of neamine moiety was modified, was developed. Most synthetic analogues exhibited good to excellent antibiotic activity against some typical drug-resistant bacteria.

View Article and Find Full Text PDF