Protein structure prediction (PSP) is a crucial issue in Bioinformatics. PSP has its important use in many vital research areas that include drug discovery. One of the important intermediate steps in PSP is predicting a protein's beta-sheet structures.
View Article and Find Full Text PDFProtein contact maps capture coevolutionary interactions between amino acid residue pairs that are spatially within certain proximity threshold. Predicted contact maps are used in many protein related problems that include drug design, protein design, protein function prediction, and protein structure prediction. Contact map prediction has achieved significant progress lately but still further challenges remain with prediction of contacts between residues that are separated in the amino acid residue sequence by large numbers of other residues.
View Article and Find Full Text PDFMotivation: Protein backbone angle prediction has achieved significant accuracy improvement with the development of deep learning methods. Usually the same deep learning model is used in making prediction for all residues regardless of the categories of secondary structures they belong to. In this paper, we propose to train separate deep learning models for each category of secondary structures.
View Article and Find Full Text PDFDNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder.
View Article and Find Full Text PDF