Purpose: To compare effectiveness of an interactive computer-aided detection (CAD) system, in which CAD marks and their associated suspiciousness scores remain hidden unless their location is queried by the reader, with the effect of traditional CAD prompts used in current clinical practice for the detection of malignant masses on full-field digital mammograms.
Materials And Methods: The requirement for institutional review board approval was waived for this retrospective observer study. Nine certified screening radiologists and three residents who were trained in breast imaging read 200 studies (63 studies containing at least one screen-detected mass, 17 false-negative studies, 20 false-positive studies, and 100 normal studies) twice, once with CAD prompts and once with interactive CAD.
Objectives: We developed a computer-aided detection (CAD) system aimed at decision support for detection of malignant masses and architectural distortions in mammograms. The effect of this system on radiologists' performance depends strongly on its standalone performance. The purpose of this study was to compare the standalone performance of this CAD system to that of radiologists.
View Article and Find Full Text PDFObjective: To evaluate an interactive computer-aided detection (CAD) system for reading mammograms to improve decision making.
Methods: A dedicated mammographic workstation has been developed in which readers can probe image locations for the presence of CAD information. If present, CAD findings are displayed with the computed malignancy rating.
In computer-aided diagnosis (CAD) research, feature selection methods are often used to improve generalization performance of classifiers and shorten computation times. In an application that detects malignant masses in mammograms, we investigated the effect of using a selection criterion that is similar to the final performance measure we are optimizing, namely the mean sensitivity of the system in a predefined range of the free-response receiver operating characteristics (FROC). To obtain the generalization performance of the selected feature subsets, a cross validation procedure was performed on a dataset containing 351 abnormal and 7879 normal regions, each region providing a set of 71 mass features.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2009
When reading mammograms, radiologists do not only look at local properties of suspicious regions but also take into account more general contextual information. This suggests that context may be used to improve the performance of computer-aided detection (CAD) of malignant masses in mammograms. In this study, we developed a set of context features that represent suspiciousness of normal tissue in the same case.
View Article and Find Full Text PDF