The extracellular matrix (ECM) of the central nervous system (CNS) is an interconnected network of proteins and sugars with critical roles in both homeostasis and disease. In neurological diseases, excessive ECM deposition and remodeling impact both injury and repair. CNS lesions of multiple sclerosis (MS), a chronic inflammatory and degenerative disease, cause prominent alterations of the ECM.
View Article and Find Full Text PDFCurr Opin Pharmacol
August 2022
Astrocytes are a group of glial cells that exhibit great morphological, transcriptional and functional diversity both in the resting brain and in response to injury. In recent years, astrocytes have attracted increasing interest as therapeutic targets for demyelinating diseases. Following a demyelinating insult, astrocytes can adopt a wide spectrum of reactive states, which can exacerbate damage, but may also facilitate oligodendrocyte progenitor cell differentiation and myelin regeneration.
View Article and Find Full Text PDFHealthy myelin is essential for proper brain function. When the myelin sheath is damaged, fast saltatory impulse conduction is lost and neuronal axons become vulnerable to degeneration. Thus, regeneration of the myelin sheath by encouraging oligodendrocyte lineage cells to remyelinate the denuded axons is a promising therapeutic target for demyelinating diseases such as multiple sclerosis.
View Article and Find Full Text PDFIn multiple sclerosis (MS), human endogenous retrovirus W family (HERV-W) envelope protein, pHERV-W ENV, limits remyelination and induces microglia-mediated neurodegeneration. To better understand its role, we examined the soluble pHERV-W antigen from MS brain lesions detected by specific antibodies. Physico-chemical and antigenic characteristics confirmed differences between pHERV-W ENV and syncytin-1.
View Article and Find Full Text PDFThe oligodendrocyte lineage cell is crucial to proper brain function. During central nervous system development, oligodendrocyte progenitor cells (OPCs) migrate and proliferate to populate the entire brain and spinal cord, and subsequently differentiate into mature oligodendrocytes that wrap neuronal axons in an insulating myelin layer. When damage occurs to the myelin sheath, OPCs are activated and recruited to the demyelinated site, where they differentiate into oligodendrocytes that remyelinate the denuded axons.
View Article and Find Full Text PDFThe 18 kDa translocator protein (TSPO) is increasingly used to study brain and spinal cord inflammation in degenerative diseases of the CNS such as multiple sclerosis. The enhanced TSPO PET signal that arises during disease is widely considered to reflect activated pathogenic microglia, although quantitative neuropathological data to support this interpretation have not been available. With the increasing interest in the role of chronic microglial activation in multiple sclerosis, characterising the cellular neuropathology associated with TSPO expression is of clear importance for understanding the cellular and pathological processes on which TSPO PET imaging is reporting.
View Article and Find Full Text PDFUpon demyelination, transient expression of fibronectin precedes successful remyelination. However, in chronic demyelination observed in multiple sclerosis (MS), aggregates of fibronectin persist and contribute to remyelination failure. Accordingly, removing fibronectin (aggregates) would constitute an effective strategy for promoting remyelination.
View Article and Find Full Text PDF