The leukemia inhibitory factor (Lif) signaling pathway is a crucial determinant for mouse embryonic stem (mES) cell self-renewal and pluripotency. One of the hallmarks of mES cells, their compact growth morphology, results from tight cell adhesion mediated through E-cadherin, β-catenin (Ctnnb1) and α-catenin with the actin cytoskeleton. β-catenin is also involved in canonical Wnt signaling, which has also been suggested to control mES cell stemness.
View Article and Find Full Text PDFTelomerase activity controls telomere length and plays a pivotal role in stem cells, aging, and cancer. Here, we report a molecular link between Wnt/β-catenin signaling and the expression of the telomerase subunit Tert. β-Catenin-deficient mouse embryonic stem (ES) cells have short telomeres; conversely, ES cell expressing an activated form of β-catenin (β-cat(ΔEx3/+)) have long telomeres.
View Article and Find Full Text PDF