Publications by authors named "Rian Kormos"

Generating stimulus-responsive, allosteric signaling is a significant challenge in protein design. In natural systems like bacterial histidine kinases (HKs), signal transduction occurs when ligand binding initiates a signal that is amplified across biological membranes over long distances to induce large-scale rearrangements and phosphorylation relays. Here, we ask whether our understanding of protein design and multi-domain, intramolecular signaling has progressed sufficiently to enable engineering of a HK with tunable components.

View Article and Find Full Text PDF

Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of great current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures, the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry.

View Article and Find Full Text PDF

Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of much current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry.

View Article and Find Full Text PDF