Publications by authors named "Riad Yahiaoui"

An all-dielectric photonic metastructure is investigated for application as a quantum algorithm emulator (QAE) in the terahertz frequency regime; specifically, we show implementation of the Deustsh-Josza algorithm. The design for the QAE consists of a gradient-index (GRIN) lens as the Fourier transform subblock and patterned silicon as the oracle subblock. First, we detail optimization of the GRIN lens through numerical analysis.

View Article and Find Full Text PDF

A system of two-level atoms cooperatively interacting with a photonic field can be described as a single giant atom coupled to the field with interaction strength . This enhancement, known as Dicke cooperativity in quantum optics, has recently become an indispensable element in quantum information technology. Here, we extend the coupling beyond the standard light-matter interaction paradigm, enhancing Dicke cooperativity in a terahertz metasurface with meta-atoms.

View Article and Find Full Text PDF

In this article, a single layer co-polarization broadband radar absorber is presented. Under normal incidence, it achieves at least 90% of absorption from 5.6 GHz to 9.

View Article and Find Full Text PDF

A thin broadband dual-layer radar absorber based on periodic Frequency Selective Surfaces (FSS) to tackle Electromagnetic Interference (EMI) in radomes is presented in this article. The proposed structure consists of periodically arranged metallic patterns printed on two dielectric substrates separated by an optimized air gap. Under normal incidence, the proposed structure exhibits at least 89.

View Article and Find Full Text PDF

Quasi-monodisperse dielectric particles organized in a periodic hexagonal network on an aluminum surface are exploited numerically and experimentally as a single-layered near-perfect absorber in the terahertz regime. Of particular interest are titanium dioxide (TiO(2)) microspheres because of their large dielectric permittivity and isotropic shape leading to Mie resonances with insensitive polarization. Absorption higher than 80% at normal incidence covering two distinct ranges of frequencies is demonstrated experimentally.

View Article and Find Full Text PDF

Standard optical lithography relying on clean room and microelectronic facilities is used to fabricate a thin-flexible metamaterial absorber, designed to operate at submillimeter wavelengths over the 0.1-1 THz frequency band. Large terahertz absorption has been demonstrated numerically and through experimental measurements with a maximum level of about 80%.

View Article and Find Full Text PDF