Deep eutectic systems are currently under intense investigation to replace traditional organic solvents in a range of syntheses. Here, indole in choline chloride-malic acid deep eutectic solvent (DES) was studied as a function of water content, to identify solute interactions with the DES which affect heterocycle reactivity and selectivity, and as a proxy for biomolecule solvation. Empirical Potential Structure Refinement models of neutron diffraction data showed [Cholinium] cations associate strongly with the indole π-system due to electrostatics, whereas malic acid is only weakly associated.
View Article and Find Full Text PDFUnderstanding and manipulating micelle morphology are key to exploiting surfactants in various applications. Recent studies have shown surfactant self-assembly in a variety of Deep Eutectic Solvents (DESs) where both the nature of surfactants and the interaction of the surfactant molecule with the solvent components influence the size, shape, and morphology of the micelles formed. So far, micelle formation has only been reported in type III DESs, consisting solely of organic species.
View Article and Find Full Text PDFDeep eutectic solvents (DES) and their hydrated mixtures are used for solvothermal routes towards greener functional nanomaterials. Here we present the first static structural and in situ studies of the formation of iron oxide (hematite) nanoparticles in a DES of choline chloride : urea where xurea = 0.67 (aka.
View Article and Find Full Text PDFDeep eutectic solvents (DES) are potentially greener solvents obtained through the complexation of simple precursors which, among other applications, have been investigated in recent years for their ability to support the self-assembly of amphiphilic molecules. It is crucial to understand the factors which influence surfactant solubility and self-assembly with respect to the interaction of the surfactant molecule with the DES components. In this work, small-angle neutron scattering (SANS) has been used to investigate the micellization of cationic (CTAB) and anionic (SDS) surfactants in a ternary DES comprising choline chloride, urea, and glycerol, where the hydrogen bond donors are mixed in varying molar ratios.
View Article and Find Full Text PDFAs the worldwide demand for energy increases, low-cost solar cells are being looked to as a solution for the future. To attain this, non-toxic earth-abundant materials are crucial, however cell efficiencies for current materials are limited in many cases. In this article, we examine the two silver copper sulfides AgCuS and AgCuS as possible solar absorbers using hybrid density functional theory, diffuse reflectance spectroscopy, XPS and Hall effect measurements.
View Article and Find Full Text PDF