Objective: Jet injectors use a high-pressure liquid jet to pierce the skin and deliver drug into underlying tissues. This jet is formed through a short, narrow orifice; the geometry of the orifice and the properties of the fluid affect the nature of the flow. We aimed to discover information about the turbulent and viscous processes that contribute to pressure loss and flow patterns during jet injection.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
We present a new design for a needle-free injector ampoule, using two concentric pistons to pressurize the fluid during the injection. The smaller, inner piston is used to provide an initial high-velocity piercing jet; it then engages the outer piston to deliver the remaining drug via a low-velocity jet. The goal of this design is to enable needle-free delivery of relatively large volumes to controlled depths in tissue, a task impractical with conventional ampoules and actuators.
View Article and Find Full Text PDFObjective: A jet injector is a device that can be used to deliver liquid drugs through the skin using a fluid jet, without the use of a needle. Most jet injectors are designed and used for the delivery of inviscid liquids, and are not optimized for the delivery of viscous drug compounds. To better understand the requirements for delivering viscous drugs, we have developed a mathematical model of the electromechanics of a moving-coil actuated jet injector as it delivers viscous fluids.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
We present a mathematical model of the dynamics of a previously developed needle-free jet injector (NFJI) that is based upon a servo-controlled Lorentz-force motor. The injector creates a fluid jet that can pierce through the skin and deliver a drug to dermal, subcutaneous and muscular tissue. We use the model to predict the jet speed achieved during an injection.
View Article and Find Full Text PDF