Production of volatile fatty acids from food waste and lignocellulosic materials has potential to avoid emissions from their production from petrochemicals and provide valuable feedstocks. Techno-economic and life cycle assessments of using food waste and grass to produce volatile fatty acids through anaerobic digestion have been conducted. Uncertainty and sensitivity analysis for both assessments were done to enable a robust forecast of key-aspects of the technology deployment at industrial scale.
View Article and Find Full Text PDFA novel approach of using two stage anaerobic digestion coupled with electrodialysis technology has been investigated. This approach was used to improving bio hydrogen and methane yields from food waste while simultaneously producing a green chemical feedstock. The first digester was used for hydrogen production and the second digester was used for methane production.
View Article and Find Full Text PDFA novel method to recover VFAs from a continually-fed 100 L food waste bioreactor was developed using industrially applicable methods. The in-situ recovery of VFAs increased production rates from 4 to 35 mg g day by alleviating end-product inhibition and arresting methanogenesis, and electrodialysis was able to concentrate the recovered VFAs to 4000 mg L. There remains considerable scope to increase the production rates and concentrations further, and the VFAs were recovered in a form that made them suitable for use as platform chemicals with minimal refining.
View Article and Find Full Text PDFElectrodialysis (ED) removed volatile fatty acids (VFAs) from a continually-fed, hydrogen-producing fermenter. Simultaneously, electrochemical removal and adsorption removed gaseous H and CO, respectively. Removing VFAs via ED in this novel process increased H yields by a factor of 3.
View Article and Find Full Text PDFWhite clover () is the key legume component of New Zealand pastoral agriculture due to the high quality feed and nitrogen inputs it provides. Invertebrate pests constrain white clover growth and this study investigated rhizosphere-associated fungal controls for two of these pests and attempts to disentangle the underpinning mechanisms. The degree of suppressiveness of 10 soils, in a latitudinal gradient down New Zealand, to added and scarab larvae was measured in untreated soil.
View Article and Find Full Text PDFThe use of electrochemical hydrogen removal (EHR) together with carbon dioxide removal (CDR) was demonstrated for the first time using a continuous hydrogen producing fermenter. CDR alone was found to increase hydrogen yields from 0.07molH2molhexose to 0.
View Article and Find Full Text PDFHydrogen production during dark fermentation is inhibited by the co-production of volatile fatty acids (VFAs) such as acetic and n-butyric acid. In this study, the effectiveness of conventional electrodialysis (CED) in reducing VFA concentrations in model solutions and hydrogen fermentation broths is evaluated. This is the first time CED has been reported to remove VFAs from hydrogen fermentation broths.
View Article and Find Full Text PDFGelatin is a principal excipient used as a binder in the formulation of lyophilized orally disintegrating tablets. The current study focuses on exploiting the physicochemical properties of gelatin by varying formulation parameters to determine their influence on orally disintegrating tablet (ODT) characteristics. Process parameters, namely pH and ionic strength of the formulations, and ball milling were investigated to observe their effects on excipient characteristics and tablet formation.
View Article and Find Full Text PDFRecent Pat Drug Deliv Formul
November 2010
Orally disintegrating tablets (ODTs) offer many advantages over the conventional oral dosage forms in terms of convenience and ease of use. Over the last decade, substantial advances in the formulation of ODTs have been achieved in academia and industry that resulted in the emerging of a large number of patents. The aim of this review is to summarise the most recent patents in ODT formulations and highlight their motivations, inventive steps and significances in the development of ODT formulations.
View Article and Find Full Text PDFThe abilities of five Lactobacillus sakei strains and one Lactococcus lactis strain to retain inhibitory activity against several target organisms in the flora of product during 12 weeks storage of vacuum-packaged lamb and beef was investigated. L. sakei strains were generally found capable of developing dominant populations on both beef and lamb.
View Article and Find Full Text PDFThe use of lactic acid bacteria (LAB) as protective cultures in vacuum-packed chill-stored meat has potential application for assuring and improving food quality, safety and market access. In a study to identify candidate strains suitable for evaluation in a meat model, agar-based methods were employed to screen 181 chilled meat and meat process-related LAB for strains inhibitory to pathogens and spoilage organisms of importance to the meat industry. Six meat-derived strains, including Lactobacillus sakei and Lactococcus lactis, were found to be inhibitory to one or more of the target strains Listeria monocytogenes, Brochothrix thermosphacta, Campylobacter jejuni and Clostridium estertheticum.
View Article and Find Full Text PDFInt J Food Microbiol
February 2004
Drip samples were collected at 4-week intervals from 10 vacuum-packaged beef striploins stored for 16 weeks at -1.5 degrees C and assayed for populations of lactic-acid bacteria (LAB), pH and spoilage-causing fermentation products. A total of 15 LAB species were identified using pulsed-field gel electrophoresis and biochemical analysis.
View Article and Find Full Text PDF