The design of molecules and materials with tailored properties is challenging, as candidate molecules must satisfy multiple competing requirements that are often difficult to measure or compute. While molecular structures produced through generative deep learning will satisfy these patterns, they often only possess specific target properties by chance and not by design, which makes molecular discovery via this route inefficient. In this work, we predict molecules with (Pareto-)optimal properties by combining a generative deep learning model that predicts three-dimensional conformations of molecules with a supervised deep learning model that takes these as inputs and predicts their electronic structure.
View Article and Find Full Text PDFIn recent years, deep learning has made remarkable strides, surpassing human capabilities in tasks, such as strategy games, and it has found applications in complex domains, including protein folding. In the realm of quantum chemistry, machine learning methods have primarily served as predictive tools or design aids using generative models, while reinforcement learning remains in its early stages of exploration. This work introduces an actor-critic reinforcement learning framework suitable for diverse optimization tasks, such as searching for molecular structures with specific properties within conformational spaces.
View Article and Find Full Text PDF