Background/objectives: Neural differentiation requires a multifaceted program to alter gene expression along the proliferation to the differentiation axis. While critical changes occur at the level of transcription, post-transcriptional mechanisms allow fine-tuning of protein output. We investigated the role of tRNAs in regulating gene expression during neural differentiation in larval brains.
View Article and Find Full Text PDFNeural differentiation requires a multifaceted program to alter gene expression along the proliferation to differentiation axis. While critical changes occur at the level of transcription, post-transcriptional mechanisms allow fine-tuning of protein output. We investigated the role of tRNAs in regulating gene expression during neural differentiation by quantifying tRNA abundance in neural progenitor-biased and neuron-biased larval brains.
View Article and Find Full Text PDFProtein-coding genes evolved codon usage bias due to the combined but uneven effects of adaptive and nonadaptive influences. Studies in model fungi agree on codon usage bias as an adaptation for fine-tuning gene expression levels; however, such knowledge is lacking for most other fungi. Our comparative genomics analysis of over 450 species supports codon usage and transfer RNAs (tRNAs) as coadapted for translation speed and this is most likely a realization of convergent evolution.
View Article and Find Full Text PDF