Menopause is associated with cognitive deficits and brain atrophy, but the brain region and cell-specific mechanisms are not fully understood. Here, we identify a sex hormone by age interaction whereby loss of ovarian hormones in female mice at midlife, but not young age, induced hippocampal-dependent cognitive impairment, dorsal hippocampal atrophy, and astrocyte and microglia activation with synaptic loss. Selective deletion of estrogen receptor beta (ERβ) in astrocytes, but not neurons, in gonadally intact female mice induced the same brain effects.
View Article and Find Full Text PDFIn multiple sclerosis (MS), demyelination occurs in the cerebral cortex, and cerebral cortex atrophy correlates with clinical disabilities. Treatments are needed in MS to induce remyelination. Pregnancy is protective in MS.
View Article and Find Full Text PDFBackground: Women are more susceptible to multiple sclerosis (MS) than men by a ratio of approximately 3:1. However, being male is a risk factor for worse disability progression. Inflammatory genes have been linked to susceptibility, while neurodegeneration underlies disability progression.
View Article and Find Full Text PDFSex differences in the incidence or severity of disease characterize many autoimmune and neurodegenerative diseases. Multiple sclerosis is a complex disease with both autoimmune and neurodegenerative aspects and is characterized by sex differences in susceptibility and progression. Research in the study sex differences is a way to capitalize on a known clinical observation, mechanistically disentangle it at the laboratory bench, then translate basic research findings back to the clinic as a novel treatment trial tailored to optimally benefit each sex.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2019
Many autoimmune diseases are more frequent in females than in males in humans and their mouse models, and sex differences in immune responses have been shown. Despite extensive studies of sex hormones, mechanisms underlying these sex differences remain unclear. Here, we focused on sex chromosomes using the "four core genotypes" model in C57BL/6 mice and discovered that the transcriptomes of both autoantigen and anti-CD3/CD28 stimulated CD4 T lymphocytes showed higher expression of a cluster of 5 X genes when derived from XY as compared to XX mice.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a putative T cell-mediated autoimmune disease. As with many autoimmune diseases, females are more susceptible than males. Sexual dimorphisms may be due to differences in sex hormones, sex chromosomes, or both.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a neuroinflammatory multifocal disorder. Optic neuritis is common in MS and leads to visual disability. No current treatments repair this damage.
View Article and Find Full Text PDFRegional differences in neurons, astrocytes, oligodendrocytes, and microglia exist in the brain during health, and regional differences in the transcriptome may occur for each cell type during neurodegeneration. Multiple sclerosis (MS) is multifocal, and regional differences in the astrocyte transcriptome occur in experimental autoimmune encephalomyelitis (EAE), an MS model. MS and EAE are characterized by inflammation, demyelination, and axonal damage, with minimal remyelination.
View Article and Find Full Text PDFBackground: Gray matter (GM) atrophy in brain is one of the best predictors of long-term disability in multiple sclerosis (MS), and recent findings have revealed that localized GM atrophy is associated with clinical disabilities. GM atrophy associated with each disability mapped to a distinct brain region, revealing a disability-specific atlas (DSA) of GM loss.
Objective: To uncover the mechanisms underlying the development of localized GM atrophy.
Cognitive impairment (CI), a debilitating and pervasive feature of multiple sclerosis (MS), is correlated with hippocampal atrophy. Findings from postmortem MS hippocampi indicate that expression of genes involved in both excitatory and inhibitory neurotransmission are altered in MS, and although deficits in excitatory neurotransmission have been reported in the MS model experimental autoimmune encephalomyelitis (EAE), the functional consequence of altered inhibitory neurotransmission remains poorly understood. In this study, we used electrophysiological and biochemical techniques to examine inhibitory neurotransmission in the CA1 region of the hippocampus in EAE.
View Article and Find Full Text PDFIntroduction: Progressive gray matter (GM) atrophy is a hallmark of multiple sclerosis (MS). Cognitive impairment has been observed in 40%-70% of MS patients and has been linked to GM atrophy. In a phase 2 trial of estriol treatment in women with relapsing-remitting MS (RRMS), higher estriol levels correlated with greater improvement on the paced auditory serial addition test (PASAT) and imaging revealed sparing of localized GM in estriol-treated compared to placebo-treated patients.
View Article and Find Full Text PDFBackground: Why are women more susceptible to multiple sclerosis, but men have worse disability progression? Sex differences in disease may be due to sex hormones, sex chromosomes, or both.
Objective: Determine whether differences in sex chromosomes can contribute to sex differences in multiple sclerosis using experimental autoimmune encephalomyelitis.
Methods: Sex chromosome transgenic mice, which permit the study of sex chromosomes not confounded by differences in sex hormones, were used to examine an effect of sex chromosomes on autoimmunity and neurodegeneration, focusing on X chromosome genes.
Changes in gene expression that occur across the central nervous system (CNS) during neurological diseases do not address the heterogeneity of cell types from one CNS region to another and are complicated by alterations in cellular composition during disease. Multiple sclerosis (MS) is multifocal by definition. Here, a cell-specific and region-specific transcriptomics approach was used to determine gene expression changes in astrocytes in the most widely used MS model, experimental autoimmune encephalomyelitis (EAE).
View Article and Find Full Text PDFDrug repurposing is an efficient approach in new treatment development since it leverages previous work from one disease to another. While multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are all neurodegenerative diseases of the central nervous system (CNS) and differ in many clinical and pathological aspects, it is possible that they may share some mechanistic features. We hypothesized that focusing on gene expression in a CNS cell type specific manner might uncover similarities between diseases that could be missed using whole tissue gene expression analyses.
View Article and Find Full Text PDFProtective effects of pregnancy during MS have led to clinical trials of estriol, the pregnancy estrogen, in MS. Since estriol binds to estrogen receptor (ER) beta, ER beta ligand could represent a "next generation estriol" treatment. Here, ER beta ligand treatment was protective in EAE in both sexes and across genetic backgrounds.
View Article and Find Full Text PDFSemin Immunopathol
November 2016
Translational research generally refers to a "bench to bedside" approach where basic science discoveries in models move to clinical trials in humans. However, a "bedside to bench to bedside" approach may be more promising with respect to clinical relevance, since it starts with a clinical observation that can serve as a research paradigm to elucidate mechanisms and translate them back into novel therapeutic approaches. The effect of pregnancy on human autoimmune disorders in general, and multiple sclerosis (MS) in particular, serves as an intriguing example of how this can be used to understand disease pathobiology and discover new therapeutic targets.
View Article and Find Full Text PDFImportance: Multiple sclerosis (MS) is characterized by progressive gray matter (GM) atrophy that strongly correlates with clinical disability. However, whether localized GM atrophy correlates with specific disabilities in patients with MS remains unknown.
Objective: To understand the association between localized GM atrophy and clinical disability in a biology-driven analysis of MS.
Background: Relapses of multiple sclerosis decrease during pregnancy, when the hormone estriol is increased. Estriol treatment is anti-inflammatory and neuroprotective in preclinical studies. In a small single-arm study of people with multiple sclerosis estriol reduced gadolinium-enhancing lesions and was favourably immunomodulatory.
View Article and Find Full Text PDFChemokine (C-C motif) ligand 2 (CCL2), initially identified as monocyte chemoattractant protein-1 (MCP-1), recruits immune cells to the central nervous system (CNS) during autoimmune inflammation. CCL2 can be expressed by multiple cell types, but which cells are responsible for CCL2 function during acute and chronic phases of autoimmune disease is not known. We determined the role of CCL2 in astrocytes in vivo during experimental autoimmune encephalomyelitis (EAE) by using Cre-loxP gene deletion.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system. While current medication reduces relapses and inflammatory activity, it has only a modest effect on long-term disability and gray matter atrophy. Here, we have characterized the potential neuroprotective effects of testosterone on cerebral gray matter in a pilot clinical trial.
View Article and Find Full Text PDFWomen are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic.
View Article and Find Full Text PDFEstrogens can signal through either estrogen receptor α (ERα) or β (ERβ) to ameliorate experimental autoimmune encephalomyelitis (EAE), the most widely used mouse model of multiple sclerosis (MS). Cellular targets of estrogen-mediated neuroprotection are still being elucidated. Previously, we demonstrated that ERα on astrocytes, but not neurons, was critical for ERα ligand-mediated neuroprotection in EAE, including decreased T-cell and macrophage inflammation and decreased axonal loss.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an autoimmune disease characterized by inflammation and neurodegeneration. Current MS treatments were designed to reduce inflammation in MS rather than directly to prevent neurodegeneration. Estrogen has well-documented neuroprotective effects in a variety of disorders of the CNS, including experimental autoimmune encephalomyelitis (EAE), the most widely used mouse model of MS.
View Article and Find Full Text PDF