Publications by authors named "Rhonda R McCartney"

Saccharomyces cerevisiae express three isoforms of Snf1 kinase that differ by which β subunit is present, Gal83, Sip1 or Sip2. Here we investigate the abundance, activation, localization and signaling specificity of the three Snf1 isoforms. The relative abundance of these isoforms was assessed by quantitative immunoblotting using two different protein extraction methods and by fluorescence microscopy.

View Article and Find Full Text PDF

The AMP-activated protein kinase is a metabolic regulator that transduces information about energy and nutrient availability. In yeast, the AMP-activated protein kinase, called Snf1, is activated when energy and nutrients are scarce. Earlier studies have demonstrated that activation of Snf1 requires the phosphorylation of the activation loop on threonine 210.

View Article and Find Full Text PDF

The glucose analog 2-deoxyglucose (2DG) inhibits the growth of Saccharomyces cerevisiae and human tumor cells, but its modes of action have not been fully elucidated. Yeast cells lacking Snf1 (AMP-activated protein kinase) are hypersensitive to 2DG. Overexpression of either of two low-affinity, high-capacity glucose transporters, Hxt1 and Hxt3, suppresses the 2DG hypersensitivity of snf1Δ cells.

View Article and Find Full Text PDF

Aerobic glycolysis is a metabolic pathway utilized by human cancer cells and also by yeast cells when they ferment glucose to ethanol. Both cancer cells and yeast cells are inhibited by the presence of low concentrations of 2-deoxyglucose (2DG). Genetic screens in yeast used resistance to 2-deoxyglucose to identify a small set of genes that function in regulating glucose metabolism.

View Article and Find Full Text PDF

The AMP-activated protein kinase (AMPK) is a conserved signaling molecule in a pathway that maintains adenosine triphosphate homeostasis. Recent studies have suggested that low energy adenylate ligands bound to one or more sites in the γ subunit of AMPK promote the formation of an active, phosphatase-resistant conformation. We propose an alternative model in which the kinase domain association with the heterotrimer core results in activation of the kinase catalytic activity, whereas low energy adenylate ligands bound in the kinase active site promote phosphatase resistance.

View Article and Find Full Text PDF

Members of the AMP-activated protein kinase (AMPK) family are activated by phosphorylation at a conserved threonine residue in the activation loop of the kinase domain. Mammalian AMPK adopts a phosphatase-resistant conformation that is stabilized by binding low energy adenylate molecules. Similarly, binding of ADP to the Snf1 complex, yeast AMPK, protects the kinase from dephosphorylation.

View Article and Find Full Text PDF

The SNF1 protein kinase complex plays an essential role in regulating gene expression in response to the level of extracellular glucose in budding yeast. SNF1 shares structural and functional similarities with mammalian AMP-activated protein kinase. Both kinases are activated by phosphorylation on a threonine residue within the activation loop segment of the catalytic subunit.

View Article and Find Full Text PDF

The phosphorylation status of the Snf1 activation loop threonine is determined by changes in the rate of its dephosphorylation, catalyzed by the yeast PP1 phosphatase Glc7 in complex with the Reg1 protein. Previous studies have shown that Reg1 can associate with both Snf1 and Glc7, suggesting substrate binding as a mechanism for Reg1-mediated targeting of Glc7. In this study, the association of Reg1 with the three Snf1 isoforms was measured by two-hybrid analysis and coimmunoprecipitation.

View Article and Find Full Text PDF

Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic alpha subunit and regulatory beta and gamma subunits. In this study, the role of the beta subunits in the regulation of Snf1 activity was examined.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae Snf1 kinase plays a critical role in recalibrating cellular metabolism in response to glucose depletion. Hundreds of genes show changes in expression levels when the SNF1 gene is deleted. However, cells can adapt to the absence of a specific gene when grown in long term culture.

View Article and Find Full Text PDF

Phosphorylation of the Saccharomyces cerevisiae Snf1 kinase activation loop is determined by the integration of two reaction rates: the rate of phosphorylation by upstream kinases and the rate of dephosphorylation by Glc7. The activities of the Snf1-activating kinases do not appear to be glucose-regulated, since immune complex kinase assays with each of the three Snf1-activating kinases show similar levels of activity when prepared from cells grown in either high or low glucose. In contrast, the dephosphorylation of the Snf1 activation loop was strongly regulated by glucose.

View Article and Find Full Text PDF

The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, the Snf1 kinase can be activated by any one of three upstream kinases, Sak1, Tos3, or Elm1. All three Snf1-activating kinases contain serine/threonine kinase domains near their N termini and large C-terminal domains with little sequence conservation and previously unknown function. Deletion of the C-terminal domains of Sak1 and Tos3 greatly reduces their ability to activate the Snf1 pathway.

View Article and Find Full Text PDF

Protein phosphorylation is estimated to affect 30% of the proteome and is a major regulatory mechanism that controls many basic cellular processes. Until recently, our biochemical understanding of protein phosphorylation on a global scale has been extremely limited; only one half of the yeast kinases have known in vivo substrates and the phosphorylating kinase is known for less than 160 phosphoproteins. Here we describe, with the use of proteome chip technology, the in vitro substrates recognized by most yeast protein kinases: we identified over 4,000 phosphorylation events involving 1,325 different proteins.

View Article and Find Full Text PDF

Members of the Snf1/AMPK family of protein kinases are activated by distinct upstream kinases that phosphorylate a conserved threonine residue in the Snf1/AMPK activation loop. Recently, the identities of the Snf1- and AMPK-activating kinases have been determined. Here we describe the purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Three upstream kinases, Pak1, Tos3 and Elm1, are able to activate the Snf1 kinase. Since the Snf1 kinase itself assembles into three complexes that differ in their beta subunit identity, the possibility exists that each upstream kinase might be dedicated to a single isoform of the Snf1 kinase. To test this dedicated activator hypothesis, we generated a series of yeast strains that lacked different combinations of upstream kinases and beta subunits.

View Article and Find Full Text PDF

Background: The yeast SNF1 protein kinase and the mammalian AMP-activated protein kinase are highly conserved heterotrimeric complexes that are "metabolic master switches" involved in the switch from fermentative/anaerobic to oxidative metabolism. They are activated by cellular stresses that deplete cellular ATP, and SNF1 is essential in the response to glucose starvation. In both cases, activation requires phosphorylation at a conserved threonine residue within the activation loop of the kinase domain, but identifying the upstream kinase(s) responsible for this has been a challenging, unsolved problem.

View Article and Find Full Text PDF

Members of the Snf1/AMP-activated protein kinase family are activated under conditions of nutrient stress by a distinct upstream kinase. Here we present evidence that the yeast Pak1 kinase functions as a Snf1-activating kinase. Pak1 associates with the Snf1 kinase in vivo, and the association is greatly enhanced under glucose-limiting conditions when Snf1 is active.

View Article and Find Full Text PDF

Activation of the Snf1 kinase requires at least two events, phosphorylation of the activation loop on threonine 210 and an Snf4-dependent process that is not completely defined. Snf4 directly interacts with a region of the regulatory domain of Snf1 that may otherwise act as an autoinhibitory domain. In order to gain insight into the regulation of Snf1 kinase by Snf4, deletions in the regulatory domain of the catalytic subunit were engineered and tested for their effect on Snf1 function in the absence of Snf4.

View Article and Find Full Text PDF

The Snf1 kinase complex of Saccharomyces cerevisiae contains one of three possible beta subunits encoded by either SIP1, SIP2, or GAL83. Snf1 kinase complexes were purified from cells expressing only one of the three beta subunits using a tandem affinity purification tag on the C terminus of the Snf1 protein. The purified kinase complexes were enzymatically active as judged by their ability to phosphorylate a recombinant protein containing the Snf1-responsive domain of the Mig1 protein.

View Article and Find Full Text PDF