Publications by authors named "Rhonda M Perciavalle"

The response of Philadelphia chromosome (Ph(+)) acute lymphoblastic leukemia (ALL) to treatment by BCR-ABL tyrosine kinase inhibitors (TKIs) has been disappointing, often resulting in short remissions typified by rapid outgrowth of drug-resistant clones. Therefore, new treatments are needed to improve outcomes for Ph(+) ALL patients. In a mouse model of Ph(+) B-lineage ALL, MCL-1 expression is dysregulated by the BCR-ABL oncofusion protein, and TKI treatment results in loss of MCL-1 expression prior to the induction of apoptosis, suggesting that MCL-1 may be an essential prosurvival molecule.

View Article and Find Full Text PDF

BCL-2 molecules are regulators of programmed cell death and defects in this pathway contribute to human diseases. One family member, MCL-1, is unique because its expression is tightly regulated and it is essential for promoting the survival of myriad cellular lineages. Additionally, MCL-1 promotes the maintenance of normal mitochondrial morphology and energy production.

View Article and Find Full Text PDF

MCL-1, an anti-apoptotic BCL-2 family member that is essential for the survival of multiple cell lineages, is also among the most highly amplified genes in cancer. Although MCL-1 is known to oppose cell death, precisely how it functions to promote survival of normal and malignant cells is poorly understood. Here, we report that different forms of MCL-1 reside in distinct mitochondrial locations and exhibit separable functions.

View Article and Find Full Text PDF

Antiapoptotic myeloid cell leukemia 1 (MCL-1) is an essential modulator of survival during the development and maintenance of a variety of cell lineages. Its turnover, believed to be mediated by the ubiquitin-proteasome system, facilitates apoptosis induction in response to cellular stress. To investigate the contribution of ubiquitinylation in regulating murine MCL-1 turnover, we generated an MCL-1 mutant lacking the lysine residues required for ubiquitinylation (MCL-1(KR)).

View Article and Find Full Text PDF

Aberrant protein aggregation is a common feature of late-onset neurodegenerative diseases, including Alzheimer's disease, which is associated with the misassembly of the Abeta(1-42) peptide. Aggregation-mediated Abeta(1-42) toxicity was reduced in Caenorhabditis elegans when aging was slowed by decreased insulin/insulin growth factor-1-like signaling (IIS). The downstream transcription factors, heat shock factor 1, and DAF-16 regulate opposing disaggregation and aggregation activities to promote cellular survival in response to constitutive toxic protein aggregation.

View Article and Find Full Text PDF