Due to the overall low abundance of volatile compounds in exhaled breath, it is necessary to preconcentrate the sample prior to traditional thermal desorption (TD) gas chromatography mass spectrometry analysis. While certain aspects of TD tubes, such as volatile storage, have been evaluated, many aspects remain uncharacterized. Two common TD tubes, Tenax TA and Biomonitoring 5TD tubes, were evaluated for background content and flow rate variability.
View Article and Find Full Text PDFExhaled breath research has been hindered by a lack of standardization in collection and analysis methodologies. Recently, the Respiration Collector forAnalysis (ReCIVA) sampling device has illustrated the potential to provide a consistent and convenient method for exhaled breath collection onto adsorbent media. However, the significant costs, compared to exhaled breath bags, associated with the standardized collector is believed to be the reason for limited widespread use by researchers in the exhaled breath field.
View Article and Find Full Text PDFInhaled medications are commonplace for administering bronchodilators, anticholinergics, and corticosteroids. While they have a defined legitimate use, they are also used in sporting events as performance-enhancing drugs. These performance enhancers can be acquired via both legal (i.
View Article and Find Full Text PDFIsoprene is one of the most abundant and most frequently evaluated volatile organic compounds in exhaled breath. Recently, several individuals with background levels of exhaled isoprene have been identified. Here, case study data are provided for an individual, identified from a previous study, with this low prevalence phenotype.
View Article and Find Full Text PDFSweat is emerging as a prominent biosource for real-time human performance monitoring applications. Although promising, sources of variability must be identified to truly utilize sweat for biomarker applications. In this proof-of-concept study, a targeted metabolomics method was applied to sweat collected from the forearms of participants in a 12-week exercise program who ingested either low or high nutritional supplementation twice daily.
View Article and Find Full Text PDFAs the demand for real-time exercise performance feedback increases, excreted sweat has become a biosource of interest for continuous human performance assessment. For sweat to truly fulfill this requirement, analyte concentrations must be normalized to adequately assess day-to-day differences within and among individuals. In this manuscript, data are presented highlighting the use of accurate localized sweat rate as a means for ion and global metabolomic data normalization.
View Article and Find Full Text PDFThe Respiration Collector for In Vitro Analysis (ReCIVA) sampler, marketed by Owlstone Medical, provides a step forward in exhaled breath sampling through active sampling directly onto thermal desorption (TD) tubes. Although an improvement to the issues surrounding breath bag sampling, the ReCIVA device, first released in 2015, is a relatively new research and clinical tool that requires further exploration. Here, data are presented comparing two distinct ReCIVA devices.
View Article and Find Full Text PDFDue to several sources of potential variability associated with exhaled breath bag sampling procedures for off-line analysis, the Respiration Collector for in vitro Analysis (ReCIVA) sampler was developed. Although designed to improve upon several pitfalls of sampling with exhaled breath bags, the ReCIVA remains a minimally studied research tool. In this manuscript, several attributes of the ReCIVA sampler are investigated among three individual tests, such as background contamination, control software version, performance of different adsorbent tubes, duplicate sample production, and comparison to exhaled breath bags.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
September 2019
Due to increased interest in the use of excreted sweat for biomarker discovery, data must be generated supporting sample collection and handling methods to allow for controlled, large-scale biomarker discovery studies to be performed. In this manuscript, twelve amino acids were quantitated from exercise-induced excreted sweat held at room temperature or a simulated body temperature of 37 °C for up to 90 min. The data illustrate a large dynamic range exists among amino acids in sweat.
View Article and Find Full Text PDFSweat is a biofluid with several attractive attributes. However, investigation into sweat for biomarker discovery applications is still in its infancy. To add support for the use of sweat as a non-invasive media for human performance monitoring, volunteer participants were subjected to a physical exertion model using a treadmill.
View Article and Find Full Text PDFThis paper introduces super absorbent polymer valves and colorimetric sensing reagents as enabling components of soft, skin-mounted microfluidic devices designed to capture, store, and chemically analyze sweat released from eccrine glands. The valving technology enables robust means for guiding the flow of sweat from an inlet location into a collection of isolated reservoirs, in a well-defined sequence. Analysis in these reservoirs involves a color responsive indicator of chloride concentration with a formulation tailored to offer stable operation with sensitivity optimized for the relevant physiological range.
View Article and Find Full Text PDFHypoxia-like incidents in-flight have increased over the past decade causing severe safety concerns across the aviation community. As a result, the need to monitor flight crews in real-time for the onset of hypoxic conditions is paramount for continued aeronautical safety. Here, hypoxic events were simulated in the laboratory via a reduced oxygen-breathing device to determine the effect of recovery gas oxygen concentration (21% and 100%) on exhaled breath volatile organic compound composition.
View Article and Find Full Text PDFThe goal of this work was to design and implement a prototype software tool for the visualization and analysis of small molecule metabolite GC-MS and LC-MS data for biomarker discovery. The key features of the Metabolite Differentiation and Discovery Lab (MeDDL) software platform include support for the manipulation of large data sets, tools to provide a multifaceted view of the individual experimental results, and a software architecture amenable to modification and addition of new algorithms and software components. The MeDDL tool, through its emphasis on visualization, provides unique opportunities by combining the following: easy use of both GC-MS and LC-MS data; use of both manufacturer specific data files as well as netCDF (network Common Data Form); preprocessing (peak registration and alignment in both time and mass); powerful visualization tools; and built in data analysis functionality.
View Article and Find Full Text PDFSingle in-frame amber (UAG) codons are found in the genes encoding MtmB, MtbB, or MttB, the methyltransferases initiating methane formation from monomethylamine, dimethylamine, or trimethylamine, respectively, in certain Archaea. The crystal structure of MtmB demonstrated that the amber codon codes for pyrrolysine, the 22nd genetically encoded amino acid found in nature. Previous attempts to visualize the amber-encoded residue by mass spectrometry identified only lysine, leaving information on the existence and structure of pyrrolysine resting entirely on crystallography of a single protein.
View Article and Find Full Text PDF