Publications by authors named "Rhonda Croxton"

Daxx is a nuclear protein that localizes to PML oncogenic domains, sensitizes cells to apoptosis, and functions as a transcriptional repressor. We found that Daxx represses the expression of several antiapoptotic genes regulated by nuclear factor-kappaB, including cIAP2, in human tumor cell lines. Daxx interacts with RelB and inhibits RelB-mediated transcriptional activation of the human cIAP2 gene promoter.

View Article and Find Full Text PDF

Ischemia-reperfusion (IR) injury induces endoplasmic reticulum (ER) stress and cell death. Bax Inhibitor-1 (BI-1) is an evolutionarily conserved ER protein that suppresses cell death and that is abundantly expressed in both liver and kidney. We explored the role of BI-1 in protection from ER stress and IR injury by using bi-1 knockout mice, employing models of transient hepatic or renal artery occlusion.

View Article and Find Full Text PDF

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) has been shown to induce apoptosis specifically in cancer cells while sparing normal tissues. Unfortunately not all cancer cells respond to TRAIL; therefore, TRAIL sensitizing agents are currently being explored. We have identified synthetic triterpenoids, including 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and its derivative 1-(2-cyano-3,12-dioxooleana-1,9-dien-28-oyl) imidazole (CDDO-Im), which sensitize TRAIL-resistant cancer cells to TRAIL-mediated apoptosis.

View Article and Find Full Text PDF

E2F1 is a potent inducer of apoptosis whereas its relative, E2F4, generally does not promote cell death. Other work from our laboratory has demonstrated that E2F1 can directly bind and represss the Mcl-1 promoter - contributing to E2F1-mediated apoptosis. Here we show that while E2F1 can repress the Mcl-1 promoter, other members of the E2F family (such as E2F4) cannot.

View Article and Find Full Text PDF

The E2F pathway has been proposed to regulate genes involved in the transition from quiescence into DNA synthesis. However, this hypothesis has not been rigorously tested on a genomic scale. Toward this end, we have infected quiescent mouse fibroblasts, which do not express E2F1, with an E2F1-expressing adenovirus and examined the expression of more than 6000 genes using high-density microarrays.

View Article and Find Full Text PDF

E2F1 induces apoptosis via both p53-dependent and p53-independent mechanisms. The direct targets in the p53-independent pathway remain enigmatic; however, the induction of this pathway does not require the transactivation domain of E2F1. Using cells that are defective in p53 activation, we show that E2F1 potently represses the expression of Mcl-1--an anti-apoptotic Bcl-2 family member whose depletion results in apoptosis.

View Article and Find Full Text PDF