Effective water management is crucial for the optimal operation of low-temperature polymer electrolyte membrane fuel cells (PEMFCs). Excessive liquid water production can cause flooding in the gas diffusion electrodes and flow channels, limiting mass transfer and reducing PEMFC performance. To tackle this issue, a nature-inspired chemical engineering (NICE) approach has been adopted that takes cues from the integument structure of desert-dwelling lizards for passive water transport.
View Article and Find Full Text PDFDegradation of cathode materials in lithium-ion batteries results in the presence of transition metal ions in the electrolyte, and these ions are known to play a major role in capacity fade and cell failure. Yet, while it is known that transition metal ions migrate from the metal oxide cathode and deposit on the graphite anode, their specific influence on anode reactions and structures, such as the solid electrolyte interphase (SEI), is still quite poorly understood due to the complexity in studying this interface in operational cells. In this work we combine electrochemical atomic force microscopy (EC-AFM), electrochemical quartz crystal microbalance (EQCM), and electrochemical impedance spectroscopy (EIS) measurements to probe the influence of a range of transition metal ions on the morphological, mechanical, chemical, and electrical properties of the SEI.
View Article and Find Full Text PDFThe Mo/Fe nitrogenase enzyme is unique in its ability to efficiently reduce dinitrogen to ammonia at atmospheric pressures and room temperature. Should an artificial electrolytic device achieve the same feat, it would revolutionize fertilizer production and even provide an energy-dense, truly carbon-free fuel. This Review provides a coherent comparison of recent progress made in dinitrogen fixation on solid electrodes, homogeneous catalysts and nitrogenases.
View Article and Find Full Text PDFThe zinc-ion battery is one of the promising candidates for next-generation energy storage devices beyond lithium technology due to the earth's abundance of Zn materials and their high volumetric energy density (5855 mA h cm). To date, the formation of Zn dendrites during charge-discharge cycling still hinders the practical application of zinc-ion batteries. It is, therefore, crucial to understand the formation mechanism of the zinc dendritic structure before effectively suppressing its growth.
View Article and Find Full Text PDFLithium-ion batteries are the most ubiquitous energy storage devices in our everyday lives. However, their energy storage capacity fades over time due to chemical and structural changes in their components, via different degradation mechanisms. Understanding and mitigating these degradation mechanisms is key to reducing capacity fade, thereby enabling improvement in the performance and lifetime of Li-ion batteries, supporting the energy transition to renewables and electrification.
View Article and Find Full Text PDFX-ray computed tomography (X-ray CT) is a non-destructive characterization technique that in recent years has been adopted to study the microstructure of battery electrodes. However, the often manual and laborious data analysis process hinders the extraction of useful metrics that can ultimately inform the mechanisms behind cycle life degradation. This work presents a novel approach that combines two convolutional neural networks to first locate and segment each particle in a nano-CT LiNiMnCoO (NMC) electrode dataset, and successively classifies each particle according to the presence of flaws or cracks within its internal structure.
View Article and Find Full Text PDFSupercapacitors are increasingly used in short-distance electric transportation due to their long lifetime (≈15 years) and fast charging capability (>10 A g ). To improve their market penetration, while minimizing onboard weight and maximizing space-efficiency, materials costs must be reduced (<10 $ kg ) and the volumetric energy-density increased (>8 Wh L ). Carbon nanofibers display good gravimetric capacitance, yet their marketability is hindered by their low density (0.
View Article and Find Full Text PDFAccurate modelling of particle shrinkage during biomass pyrolysis is key to the production of biochars with specific morphologies. Such biochars represent sustainable solutions to a variety of adsorption-dependent environmental remediation challenges. Modelling of particle shrinkage during biomass pyrolysis has heretofore been based solely on theory and ex-situ experimental data.
View Article and Find Full Text PDFDue to complex degradation mechanisms, disparities between the theoretical and practical capacities of lithium-ion battery cathode materials persist. Specifically, Ni-rich chemistries such as LiNiMnCoO (or NMC811) are one of the most promising choices for automotive applications; however, they continue to suffer severe degradation during operation that is poorly understood, thus challenging to mitigate. Here we use Bragg coherent diffraction imaging for 4D analysis of these mechanisms by inspecting the individual crystals within primary particles at various states of charge (SoC).
View Article and Find Full Text PDFCreating effective and stable catalyst nanoparticle-coated electrodes that can withstand extensive cycling is a current roadblock in realising the potential of polymer electrolyte membrane fuel cells. Graphene has been proposed as an ideal electrode support material due to its corrosion resistance, high surface area and high conductivity. However, to date, graphene-based electrodes suffer from high defect concentrations and non-uniform nanoparticle coverage that negatively affects performance; moreover, production methods are difficult to scale.
View Article and Find Full Text PDFUnderstanding and ultimately controlling the properties of the solid-electrolyte interphase (SEI) layer at the graphite anode/liquid electrolyte boundary are of great significance for maximizing the performance and lifetime of lithium-ion batteries (LIBs). However, comprehensive in situ monitoring of SEI formation and evolution, alongside measurement of the corresponding mechanical properties, is challenging due to the limitations of the characterization techniques commonly used. This work provides a new insight into SEI formation during the first lithiation and delithiation of graphite battery anodes using operando electrochemical atomic force microscopy (EC-AFM).
View Article and Find Full Text PDFVast quantities of powder leave production lines each day, often with strict control measures. For quality checks to provide the most value, they must be capable of screening individual particles in 3D and at high throughput. Conceptually, X-ray computed tomography (CT) is capable of this; however, achieving lab-based reconstructions of individual particles has, until now, relied upon scan-times on the order of tens of hours, or even days, and although synchrotron facilities are potentially capable of faster scanning times, availability is limited, making in-line product analysis impractical.
View Article and Find Full Text PDFThis study presents the application of X-ray diffraction computed tomography for the first time to analyze the crystal dimensions of LiNi0.33Mn0.33Co0.
View Article and Find Full Text PDFWe have discovered a very simple method to address the challenge associated with the low volumetric energy density of free-standing carbon nanofiber electrodes for supercapacitors by electrospinning Kraft lignin in the presence of an oxidizing salt (NaNO) and subsequent carbonization in a reducing atmosphere. The presence of the oxidative salt decreases the diameter of the resulting carbon nanofibers doubling their packing density from 0.51 to 1.
View Article and Find Full Text PDFAs the energy density of lithium-ion cells and batteries increases, controlling the outcomes of thermal runaway becomes more challenging. If the high rate of gas generation during thermal runaway is not adequately vented, commercial cell designs can rupture and explode, presenting serious safety concerns. Here, ultra-high-speed synchrotron X-ray imaging is used at >20 000 frames per second to characterize the venting processes of six different 18650 cell designs undergoing thermal runaway.
View Article and Find Full Text PDFElectrospun custom made flow battery electrodes are imaged in 3D using X-ray computed tomography. A variety of computational methods and simulations are applied to the images to determine properties including the porosity, fiber size, and pore size distributions as well as the material permeability and flow distributions. The simulations are performed on materials before and after carbonization to determine the effect it has in the internal microstructure and material properties.
View Article and Find Full Text PDFA novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO to U metal in LiCl-KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl-KCl eutectic electrolyte.
View Article and Find Full Text PDFA new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
April 2014
Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/LiCl), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability.
View Article and Find Full Text PDF