The development of therapies to prevent or delay the onset of type 1 diabetes (T1D) remains challenging, and there is a lack of qualified biomarkers to identify individuals at risk of developing T1D or to quantify the time-varying risk of conversion to a diagnosis of T1D. To address this drug development need, the T1D Consortium (i) acquired, remapped, integrated, and curated existing patient-level data from relevant observational studies, and (ii) used a model-based approach to evaluate the utility of islet autoantibodies (AAs) against insulin/proinsulin autoantibody, GAD65, IA-2, and ZnT8 as biomarkers to enrich subjects for T1D prevention. The aggregated dataset was used to construct an accelerated failure time model for predicting T1D diagnosis.
View Article and Find Full Text PDFFarmers in Sub-Saharan Africa have lower agricultural technology adoption rates compared to the rest of the world. It is believed that the past season yield affects a farmer's capacity to take on the riskier improved seed variety; but this effect has not been studied. We quantify the effect of past season yield on improved corn seed use in future seasons while addressing the impact of the seed variety on yield.
View Article and Find Full Text PDF