Publications by authors named "Rhitu Kotoky"

Due to unique genomic adaptations, Methanococcus maripaludis Mic1c10 is highly corrosive when in direct contact with Fe. A critical adaptation involves increased glycosylation of an extracellular [NiFe]-hydrogenase, facilitating its anchoring to cell surface proteins. Corrosive strains adapt to the constructed environment via horizontal gene transfer while retaining ancestral genes important for intraspecies competition and surface attachment.

View Article and Find Full Text PDF

Unlabelled: is an indigenous perennial herb known for its therapeutic properties. It's grown in the eastern Himalayas and East Asia, where it is used as a flavoring agent in local cuisines. This research aims to enhance soil phosphorus mobilization and promote growth using a consortium of phosphate-solubilizing bacteria (PSB).

View Article and Find Full Text PDF

Hydrocarbonoclastic bacterial strains were isolated from rhizosphere of plants growing in crude oil-contaminated sites of Assam, India. These bacteria showed plant growth-promoting attributes, even when exposed to crude oil. Two independent pot trials were conducted to test the rhizodegradation ability of the bacterial consortium in combination of plants Azadirchta indica or Delonix regia in crude oil-contaminated soil.

View Article and Find Full Text PDF

Aim: Environmental stresses such as water deficit induced stress are one of the major limiting factors in crop production. However, some plant growth-promoting rhizobacteria (PGPR) can promote plant growth in such adverse condition. Therefore, the objective was to isolate rhizospheric bacteria from Phaseolus vulgaris L.

View Article and Find Full Text PDF

The sheer persistence and dissemination of xenobiotic aromatic hydrocarbons contaminants demand sustainable solutions for degradation. Therefore, major pathways of microbial catabolism of aromatic hydrocarbons under aerobic conditions are reviewed and analysed to elicit enhanced biodegradation of aromatic hydrocarbons, via the structure-function relationship of bacterial transcriptional regulators. The initial step of the catabolism occurs via the incorporation of molecular oxygen into the aromatic ring by a multicomponent aromatic ring-hydroxylating-dioxygenase (RHD) enzyme system or monooxygenase system forming different central intermediates such as catechols, protocatechuates, gentisates, and (hydroxy)benzoquinols.

View Article and Find Full Text PDF

Hot springs are considered to be a unique environment with extremophiles, that are sources of industrially important enzymes, and other biotechnological products. The objective of this study was to undertake, analyze, and characterize the microbiome of two major hot springs located in the state of Madhya Pradesh explicitly, Chhoti Anhoni (Hotspring 1), and Badi Anhoni (Hotspring 2) to find out the inhabitant microbial population, and their functional characteristics. The taxonomic analysis of the microbiome of the hot springs revealed the phylum Proteobacteria was the most abundant taxa in both the hot-springs, however, its abundance in hot-spring 1 (~88%) was more than the hot-spring 2 (~52%).

View Article and Find Full Text PDF

The increasing prevalence of antibiotic-resistant microorganisms in both clinical and environmental samples is of great concern for public health. In the present study, environmental samples from seven different sites, heavily contaminated with petroleum hydrocarbons has been examined for the antimicrobial resistome through metagenomic approach. The soil samples were found to be contaminated with high concentration of total petroleum hydrocarbons (average 45 g/kg), polyaromatic hydrocarbons (average ∑16PAH = 280 mg/kg), and heavy metals, which shapes the microbial community and their function.

View Article and Find Full Text PDF

Bacillus subtilis SR1 is a metal resistant, polyaromatic hydrocarbon-degrading bacterium isolated from petroleum contaminated sites. This study reports the characteristics of the genome of the isolate containing one circular chromosome (4,093,698 bp) annotated into 4155 genes and 4095 proteins. The genome analysis confirmed the presence of multiple catabolic genes: aromatic ring-hydroxylating dioxygenase (COG2146), aromatic ring hydroxylase (COG2368), catechol 2, 3 dioxygenase (COG2514), 4-hydroxybenzoate decarboxylase (COG0043), carboxymuconolactone decarboxylase (COG0599) responsible for the catabolism of aromatic hydrocarbons along with the genes for biosurfactant production and functional genes (czcD and cadA) for resistance to cadmium, zinc, and cobalt.

View Article and Find Full Text PDF

Benzo(a)pyrene (BaP) is a highly persistent biohazard polyaromatic hydrocarbon and often reported to be present in soils co-contaminated with heavy metals. The present study explains the rhizodegradation of BaP using bacterial consortium in the rhizosphere of Melia azedarach, along with a change in taxonomical and functional properties of the rhizosphere microbiome. The relative abundance of most dominant phylum Proteobacteria was 2% higher with BaP, while in the presence of both BaP and Cd, its abundance was 2.

View Article and Find Full Text PDF

Melia azedarach-rhizosphere mediated degradation of benzo(a)pyrene (BaP), in the presence of cadmium (Cd) was studied, using efficient rhizobacterial isolate. Serratia marcescens S2I7, isolated from the petroleum-contaminated site, was able to tolerate up to 3.25 mM Cd.

View Article and Find Full Text PDF

Benzo(a)pyrene is a high-molecular-weight polycyclic aromatic hydrocarbon highly persistent in the environment as a biohazard. The present research emphasizes on rhizodegradation of BaP using bacterial isolates, S1I26 (NCBI accession no- KX692271), and sp. S1I8 (KX602663) with plant .

View Article and Find Full Text PDF

Microbial communities are an essential part of plant rhizosphere and participate in the functioning of plants, including rhizoremediation of petroleum contaminants. Rhizoremediation is a promising technology for removal of polyaromatic hydrocarbons based on interactions between plants and microbiome in the rhizosphere. Root exudation in the rhizosphere provides better nutrient uptake for rhizosphere microbiome, and therefore it is considered to be one of the major factors of microbial community function in the rhizosphere that plays a key role in the enhanced PAH biodegradation.

View Article and Find Full Text PDF

strain DBC was isolated from crude oil-contaminated soil. The genome of DBC is comprised of 5,072,304 bp with 54.09% GC content.

View Article and Find Full Text PDF

SR1 is a heavy metal-resistant, polyaromatic hydrocarbon-degrading bacterium isolated from rhizospheric soil of contaminated sites. It has the ability to promote plant growth and utilize benzo[]pyrene as a carbon source. This study reports the characteristics of the genome of SR1, which contains one circular chromosome (4,093,698 bp).

View Article and Find Full Text PDF

BDB4 was isolated from crude oil-contaminated soil in India. The genome sequence of BDB4 revealed the presence of important genes required for polyaromatic hydrocarbon (PAH) metabolism and other associated functions, such as chemotaxis, membrane transport, and biofilm formation, giving insight into the complete PAH mineralization potential of this bacterium.

View Article and Find Full Text PDF

S2I7 is a heavy metal-resistant, polyaromatic hydrocarbon-degrading bacterium isolated from petroleum-contaminated sites. The genome contains one circular chromosome (5,241,555 bp; GC content 60.1%) with 4,533 coding sequences.

View Article and Find Full Text PDF