We report the first joint anion photoelectron spectroscopy and theoretical study on how O-binding affects the structures of medium even-sized gold clusters, Au ( = 20-34), a special size region that entails a variety of distinct structures. Under the temperature conditions in the current photoelectron spectroscopy experiment, O-bound gold clusters were observed only for = 22-24 and 34. Nevertheless, O binding with the clusters in the size range of = 20-34 can be still predicted based on the obtained global-minimum structures.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
Determining the principal energy-transfer pathways responsible for allosteric communication in biomolecules remains challenging, partially due to the intrinsic complexity of the systems and the lack of effective characterization methods. In this work, we introduce the eigenvector centrality metric based on mutual information to elucidate allosteric mechanisms that regulate enzymatic activity. Moreover, we propose a strategy to characterize the range of correlations that underlie the allosteric processes.
View Article and Find Full Text PDFBesides the size and structure, compositions can also dramatically affect the properties of alloy nanoclusters. Due to the added degrees of freedom, determination of the global minimum structures for multi-component nanoclusters poses even greater challenges, both experimentally and theoretically. Here we report a systematic and joint experimental/theoretical study of a series of gold-aluminum alloy clusters, AuxAly(-) (x + y = 7,8), with various compositions (x = 1-3; y = 4-7).
View Article and Find Full Text PDFPhotoelectron spectroscopy and ab initio calculations have been carried out to probe the structures and chemical bonding of the B27 (-) cluster. Comparison between the experimental spectrum and the theoretical results reveals a two-dimensional (2D) global minimum with a triangular lattice containing a tetragonal defect (I) and two low-lying 2D isomers (II and III), each with a hexagonal vacancy. All three 2D isomers have 16 peripheral boron atoms and 11 inner boron atoms.
View Article and Find Full Text PDFThe rhodium-catalyzed enantioselective desymmetrization of symmetric γ,δ-unsaturated amides via carbonyl-directed catalytic asymmetric hydroboration (directed CAHB) affords chiral secondary organoboronates with up to 98% ee. The chiral γ-borylated products undergo palladium-catalyzed Suzuki-Miyaura cross-coupling via the trifluoroborate salt with stereoretention.
View Article and Find Full Text PDFThe oxygen-evolving complex of photosystem II can function with either Ca(2+) or Sr(2+) as the heterocation, but the reason for different turnover rates remains unresolved despite reported X-ray crystal structures for both forms. Using quantum mechanics/molecular mechanics (QM/MM) calculations, we optimize structures with each cation in both the resting state (S1) and in a series of reduced states (S0, S-1, and S-2). Through comparison with experimental data, we determine that the X-ray crystal structures with either Ca(2+) or Sr(2+) are most consistent with the S-2 state (i.
View Article and Find Full Text PDFPhotoelectron spectroscopy and ab initio calculations are used to investigate the structures and chemical bonding of the B25(-) cluster. Global minimum searches reveal a dense potential energy landscape with 13 quasi-planar structures within 10 kcal/mol at the CCSD(T)/6-311+G(d) level of theory. Three quasi-planar isomers (I, II, and III) are lowest in energy and nearly degenerate at the CCSD(T) level of theory, with II and III being 0.
View Article and Find Full Text PDFUsing the minima hopping global optimization method at the density functional level, we found low-energy nanostructures for neutral Au26 and its anion. The local-density and a generalized gradient approximation of the exchange–correlation functional predict different nanoscale motifs. We found a vast number of isomers within a small energy range above the respective putative global minima with each method.
View Article and Find Full Text PDFA two-point binding mechanism for the cationic rhodium(I)-catalyzed carbonyl-directed catalytic asymmetric hydroboration of a cyclic γ,δ-unsaturated amide is investigated using density functional theory. Geometry optimizations and harmonic frequency calculations for the model reaction are carried out using the basis set 6-31+G** for C, O, P, B, N, and H and LANL2DZ for Rh atoms. The Gibbs free energy of each species in THF solvent is obtained based on the single-point energy computed using the PCM model at the ECP28MWB/6-311+G(d,p) level plus the thermal correction to Gibbs free energy by deducting translational entropy contribution.
View Article and Find Full Text PDFThe S0 → S1 transition of the oxygen-evolving complex (OEC) of photosystem II is one of the least understood steps in the Kok cycle of water splitting. We introduce a quantum mechanics/molecular mechanics (QM/MM) model of the S0 state that is consistent with extended X-ray absorption fine structure spectroscopy and X-ray diffraction data. In conjunction with the QM/MM model of the S1 state, we address the proton-coupled electron-transfer (PCET) process that occurs during the S0 → S1 transition, where oxidation of a Mn center and deprotonation of a μ-oxo bridge lead to a significant rearrangement in the OEC.
View Article and Find Full Text PDFThe spectral tuning of halorhodopsin from Halobacterium salinarum (shR) during anion transport was analyzed at the molecular level using DFT-QM/MM [SORCI+Q//B3LYP/6-31G(d):Amber96] hybrid methods. Insights into the influence of Cl(-) depletion, Cl(-) substitution by N3(-) or NO3(-), and mutation of key amino acid residues along the ion translocation pathway (H95A, H95R, Q105E, R108H, R108I, R108K, R108Q, T111V, R200A, R200H, R200K, R200Q, and T203V) were analyzed for the first time in a fully atomistic model of the shR photoreceptor. We found evidence that structural rearrangements mediated by specific hydrogen bonds of internal water molecules and counterions (D238 and Cl(-)) in the active site induce changes in the bond-length alternation of the all-trans retinyl chromophore and affect the wavelength of maximal absorption in shR.
View Article and Find Full Text PDFDirected catalytic asymmetric hydroborations of 1,1-disubstituted alkenes afford γ-dioxaborato amides and esters in high enantiomeric purity (90-95% ee).
View Article and Find Full Text PDFThe activation of dioxygen is a key step in CO oxidation catalyzed by gold nanoparticles. It is known that small gold cluster anions with even-numbered atoms can molecularly chemisorb O(2) via one-electron transfer from Au(n)(-) to O(2), whereas clusters with odd-numbered atoms are inert toward O(2). Here we report spectroscopic evidence of two modes of O(2) activation by the small even-sized Au(n)(-) clusters: superoxo and peroxo chemisorption.
View Article and Find Full Text PDFAtomic structure of a recently synthesized ligand-covered cluster Au(24)(SR)(20) [J. Phys. Chem.
View Article and Find Full Text PDFThe structural and electronic effects of isoelectronic substitution by Ag and Cu atoms on gold cluster anions in the size range between 13 and 15 atoms are studied using a combination of photoelectron spectroscopy and first-principles density functional calculations. The most stable structures of the doped clusters are compared with those of the undoped Au clusters in the same size range. The joint experimental and theoretical study reveals a new C(3v) symmetric isomer for Au(13)(-), which is present in the experiment, but has hitherto not been recognized.
View Article and Find Full Text PDFThe effects of isoelectronic substitution on the electronic and structural properties of gold clusters are investigated in the critical size range of the two-dimensional (2D)-three-dimensional (3D) structural transition (MAu(n)(-), n=8-11; M=Ag,Cu) using photoelectron spectroscopy and density functional calculations. Photoelectron spectra of MAu(n)(-) are found to be similar to those of the bare gold clusters Au(n+1)(-), indicating that substitution of a Au atom by a Ag or Cu atom does not significantly alter the geometric and electronic structures of the clusters. The only exception occurs at n=10, where very different spectra are observed for MAu(10)(-) from Au(11)(-), suggesting a major structural change in the doped clusters.
View Article and Find Full Text PDFA variety of experimental techniques are used to resolve energetically close isomers of Au(7)(-) and Au(8)(-) by combining photoelectron spectroscopy and ab initio calculations. Two structurally distinct isomers are confirmed to exist in the cluster beam for both clusters. Populations of the different isomers in the cluster beam are tuned using Ar-tagging, O(2)-titration, and isoelectronic atom substitution by Cu and Ag.
View Article and Find Full Text PDFWe report a joint experimental and theoretical study of CO chemisorption on the golden cages. We find that the Au(17)(-) cage is highly robust and retains its cage structure in Au(17)(CO)(-). On the other hand, the Au(16)(-) cage is transformed to a structure similar to Au(17)(-) upon the adsorption of CO.
View Article and Find Full Text PDFHow nanoclusters transform from one structural type to another as a function of size is a critical issue in cluster science. Here we report a study of the structural transition from the golden cage Au(16)(-) to the pyramidal Au(20)(-). We obtained distinct experimental evidence that the cage-to-pyramid crossover occurs at Au(18)(-), for which the cage and pyramidal isomers are nearly degenerate and coexist experimentally.
View Article and Find Full Text PDFWe report a joint experimental and theoretical study on the structures of a series of gold clusters doped with a group-14 atom: MAu(x)(-) (M = Si, Ge, Sn; x = 5-8). Well-resolved photoelectron spectra were obtained and compared to calculations at several levels of theory to identify the low-lying structures of MAu(5-8)(-). We found that the structure of SiAu(5)(-) is dominated by the tetrahedrally coordinated Si motif, which can be viewed as built from the tetrahedral SiAu(4)(-) by an extra Au atom bonded to a terminal gold atom.
View Article and Find Full Text PDFThe golden Au(16)(-) cage is doped systematically with an external atom of different valence electrons: Ag, Zn, and In. The electronic and structural properties of the doped clusters, MAu(16)(-) (M = Ag,Zn,In), are investigated by photoelectron spectroscopy and theoretical calculations. It is observed that the characteristic spectral features of Au(16)(-), reflecting its near tetrahedral (T(d)) symmetry, are retained in the photoelectron spectra of MAu(16)(-), suggesting endohedral structures with little distortion from the parent Au(16)(-) cage for the doped clusters.
View Article and Find Full Text PDFAzobenzene-based bispropargyl bissulfone 3 containing stable E-azo moiety has been synthesized. Upon irradiation with long wavelength UV it isomerized to the Z-form 4, which can be thermally reisomerized to the E-isomer. Reactivity towards isomerization to the allenic system as well as DNA-cleaving efficiency under basic conditions was found to be significantly lower as compared to the previously synthesized cyclic sulfones 1 and 2.
View Article and Find Full Text PDF