Background: The new genomic technologies have provided novel insights into the genetics of interactions between vectors, viruses and hosts, which are leading to advances in the control of arboviruses of medical importance. However, the development of tools and resources available for vectors of non-zoonotic arboviruses remains neglected. Biting midges of the genus Culicoides transmit some of the most important arboviruses of wildlife and livestock worldwide, with a global impact on economic productivity, health and welfare.
View Article and Find Full Text PDFBackground: Culicoides biting midges (Diptera: Ceratopogonidae) are responsible for the biological transmission of internationally important arboviruses of livestock. In 2011, a novel Orthobunyavirus was discovered in northern Europe causing congenital malformations and abortions in ruminants. From field studies, Culicoides were implicated in the transmission of this virus which was subsequently named Schmallenberg virus (SBV), but to date no assessment of susceptibility to infection of field populations under standardised laboratory conditions has been carried out.
View Article and Find Full Text PDFField isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV.
View Article and Find Full Text PDFThe African swine fever virus A238L protein inhibits calcineurin phosphatase activity and activation of NF-kappaB and p300 co-activator. An 82 amino acid domain containing residues 157 to 238 at the C-terminus of A238L was expressed in E. coli and purified.
View Article and Find Full Text PDFThis study examined nuclear and cytoplasmic shuttling of the African swine fever virus (ASFV) A238L protein, which is an inhibitor of NF-kappaB and of calcineurin phosphatase. The results showed that the protein was present in both the nucleus and the cytoplasm in ASFV-infected cells and that the higher molecular mass 32 kDa form of the A238L protein was the predominant nuclear form, which accumulated later in infection. In contrast, both the 28 and 32 kDa forms of the A238L protein were present in the cytoplasm.
View Article and Find Full Text PDFVet Immunol Immunopathol
August 2004
African swine fever virus (ASFV) can cause an acutely fatal haemorrhagic fever in domestic pigs although in its natural hosts, warthogs, bushpigs and the soft tick vector, Ornithodoros moubata, ASFV causes inapparent persistent infections. The virus is a large, cytoplasmic, double-stranded DNA virus which has a tropism for macrophages. As it is the only member of the Asfarviridae family, ASFV encodes many novel genes not encoded by other virus families.
View Article and Find Full Text PDF