Publications by authors named "Rhiannon Kundu"

Islet transplantation is an effective therapy for life-threatening hypoglycemia, but graft function gradually declines over time in many recipients. We characterized islet-specific T cells in recipients within an islet transplant program favoring alemtuzumab (ATZ) lymphodepleting induction and examined associations with graft function. Fifty-eight recipients were studied: 23 pretransplant and 40 posttransplant (including 5 with pretransplant phenotyping).

View Article and Find Full Text PDF

Coxsackie B Virus (CBV) infection has been linked to the aetiology of type 1 diabetes (T1D) and vaccination has been proposed as prophylaxis for disease prevention. Serum neutralising antibodies and the presence of viral protein and RNA in tissues have been common tools to examine this potential disease relationship, whilst the role of anti-CBV cytotoxic T cell responses and their targets have not been studied. To address this knowledge gap, we augmented conventional HLA-binding predictive algorithm-based epitope discovery by cross-referencing epitopes with sites of positive natural selection within the CBV3 viral genome, identified using mixed effects models of evolution.

View Article and Find Full Text PDF

Vitamin D is widely reported to inhibit innate immune signalling and dendritic cell (DC) maturation as a potential immunoregulatory mechanism. It is not known whether vitamin D has global or gene-specific effects on transcriptional responses downstream of innate immune stimulation, or whether vitamin D inhibition of innate immune signalling is common to different cells. We confirmed vitamin D inhibition of nuclear factor-κB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signalling in monocyte-derived DC (MDDC) stimulated with lipopolysaccharide (LPS).

View Article and Find Full Text PDF

The active vitamin D metabolite 1α,25-dihydroxyvitamin D (1,25[OH]₂ D) potently inhibits DC priming of T-cell activation, suggesting that it mediates a homeostatic role in this context. Therefore, careful regulation of 1,25[OH]₂ D levels is necessary to avoid inappropriate inhibition of T-cell activation. Cell-autonomous control of vitamin D activity can be modulated by the action of the vitamin D-activating and -inactivating hydroxylases, CYP27B1, and CYP24A1, respectively.

View Article and Find Full Text PDF