This early career research highlight provides a review of my own research program over the last decade, a time frame that encompasses my transition from postdoctoral fellowships to independent researcher. As an analytical chemist and applied spectroscopist, the central theme of my research program over this time has been protocol development at synchrotron facilities, with the main objective to investigate brain metal homeostasis during both brain health and brain disease. I will begin my review with an overview of brain metal homeostasis, before introducing analytical challenges associated with its study.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
March 2024
Stroke represents a core area of study in neurosciences and public health due to its global contribution toward mortality and disability. The intricate pathophysiology of stroke, including ischemic and hemorrhagic events, involves the interruption in oxygen and nutrient delivery to the brain. Disruption of these crucial processes in the central nervous system leads to metabolic dysregulation and cell death.
View Article and Find Full Text PDFDegradation of fingermark residue has a major impact on the successful forensic detection of latent fingermarks. The time course of degradation has been previously explored with bulk chemical analyses, but little is known about chemical alterations within specific regions of the fingermark, which is difficult to study with bulk measurement. Here we report the use of synchrotron-sourced attenuated total reflection-Fourier transform infrared (ATR-FTIR) microspectroscopy to provide spatio-temporal resolution of chemical changes within fingermark droplets, as a function of time since deposition, under ambient temperature conditions.
View Article and Find Full Text PDFIn forensic science, knowledge and understanding of material transfer and persistence is inherent to the interpretation of trace evidence and can provide vital information on the activity level surrounding a crime. Detecting metal ions in fingermark residue has long been of interest in the field of forensic science, due to the possibility of linking trace metal ion profiles to prior activity with specific metal objects ( gun or explosive handling). Unfortunately, the imaging capability to visualise trace metal ions at sufficient spatial resolution to determine their distribution within a fingermark (micron level) was not previously available.
View Article and Find Full Text PDFFingermarks are an important form of crime-scene trace evidence; however, their usefulness may be hampered by a variation in response or a lack of robustness in detection methods. Understanding the chemical composition and distribution within fingermarks may help explain variation in latent fingermark detection with existing methods and identify new strategies to increase detection capabilities. The majority of research in the literature describes investigation of organic components of fingermark residue, leaving the elemental distribution less well understood.
View Article and Find Full Text PDFLatent fingermarks are an important form of crime-scene trace evidence and their usefulness may be increased by a greater understanding of the effect of chemical distribution within fingermarks on the sensitivity and robustness of fingermark detection methods. Specifically, the relative abundance and micro-distribution of sebaceous (lipophilic) and eccrine (hydrophilic) material in fingermarks have long been debated in the field, yet direct visualisation of relative abundance and micro-distribution was rarely achieved. Such a visualisation is nonetheless essential to provide explanations for the variation in reproducibility or robustness of latent fingermark detection with existing methods, and to identify new strategies to increase detection capabilities.
View Article and Find Full Text PDF