Publications by authors named "Rhianne C Curley"

The uptake and phototoxicity of a family of BODIPY-perylene charge transfer dyads are compared in live cancer and non-cancer cell lines to evaluate their performance in imaging and photodynamic therapy (PDT). The impact of iodination and mesylation of the meso position of the compounds on their optical properties, cell uptake and toxicity are compared. Notably, across all derivatives the probes were minimally dark toxic up to 50 μM, (the maximum concentration tested), but exhibited outstanding phototoxicity with nanomolar IC values and impressive phototoxic indices (PI, ratio of dark IC to light IC), with best performance for the mesylated iodinated derivative MB2PI, which had a PI of >218 and >8.

View Article and Find Full Text PDF

A first example of a mitochondrial G-quadruplex (mitoG4s) targeted Ru(II) photooxidant complex is reported. The complex, Ru-TAP-PDC3 induces photodamage toward guanine quadruplexes (G4s) located in the mitochondrial genome under hypoxic and normoxic conditions. Ru-TAP-PDC3 shows high affinity for mitoG4s and localises within mitochondria of live HeLa cells.

View Article and Find Full Text PDF

Tridentate ligand-coordinated ruthenium (II) polypyridyl complexes with large N-Ru-N bite angles have been shown to promote ligand field splitting and reduce singlet-triplet state mixing leading to dramatically extended emission quantum yields and lifetimes under ambient conditions. These effects are anticipated to enhance their photoinduced singlet oxygen production, promoting prospects for such complexes as type II phototherapeutics. In this contribution, we examined this putative effect for [Ru(bqp)(bqpCOOEt)], Ru-bqp-ester, a heteroleptic complex containing bqp = [2,6-bi(quinolin-8-yl)pyridine], a well-established large bite angle tridentate ligand, as well as its peptide conjugates [Ru(bqp)(bqpCONH-ahx-FrFKFrFK(Ac)-CONH)] (Ru-bqp-MPP) and [Ru(bqp) (bqp)(CONH-ahx-RRRRRRRR-CONH)] (Ru-bqp-R8) that were prepared in an effort to promote live cell/tissue permeability and targeting of the parent.

View Article and Find Full Text PDF
Article Synopsis
  • * While their behavior in solution is well-researched, their functionality in live cells is not as thoroughly understood.
  • * This study examines the excited-state dynamics of a specific BODIPY-perylene dyad, focusing on how it senses local viscosity in living cells using advanced time-resolved techniques.
View Article and Find Full Text PDF