The APPswe/PS1dE9 mouse (line 85) is a double transgenic model of Alzheimer's disease (AD) with familial amyloid precursor protein and presenilin-1 mutations. These mice develop age-related behavioral changes reflective of the neuropsychiatric symptoms (altered anxiety-like behaviour, hyperactivity) and cognitive dysfunction (impaired learning and memory) observed in AD. The APPswe/PS1dE9 mouse has been used to examine the efficacy of therapeutic interventions on behaviour, despite previous difficulties in replicating behavioural phenotypes.
View Article and Find Full Text PDFBehav Brain Res
September 2013
Transgenic mice are a valuable tool in the investigation of neurodegenerative disorders such as Alzheimer's disease. The triple transgenic mouse (3×Tg-AD) is a model of Alzheimer's disease that possesses age-related amyloid beta plaques, neurofibrillary tangles and cell death as well as cognitive decline. Because maternal effects may interact with pup genotype in determining behavior phenotypes, we used a cross-fostering paradigm to investigate the effects of maternal genotype on behavioral development of the 3×Tg-AD mouse model and its wildtype control (B6129S1F2) from 2 to 24 days of age.
View Article and Find Full Text PDFWe examined measures of locomotor and anxiety-like behavior in male and female mice of 15 inbred strains on the elevated-plus maze, light/dark transition box and open field. Strain differences were found on all measures of locomotor activity and anxiety. Strain means for measures of locomotor activity on the three apparatus were significantly correlated, but strain means for commonly used measures of anxiety were not correlated.
View Article and Find Full Text PDFSemaphorin 5A (Sema5A) expression is reduced in the brain of individuals with autism, thus mice with reduced Sema5A levels may serve as a model of this neurodevelopmental disorder. We tested male and female Sema5a knockout mice (B6.129P2SEMA5A(<)™(1DGEN>)/J) and C57BL/6J controls for emotionality, visual ability, prepulse inhibition, motor learning and cognition.
View Article and Find Full Text PDF