Publications by authors named "Rheure Alves Lopes"

Article Synopsis
  • The study investigates the interaction between Ang-(1-7) and the ET-1 system in the context of pulmonary hypertension, suggesting that Ang-(1-7) opposes harmful effects of ET-1.
  • Research methods include various models (in vivo in mice, ex vivo in isolated arteries, and in vitro in human cells) that demonstrate Ang-(1-7) treatment reduces pulmonary vascular damage and promotes vasodilation.
  • Findings reveal a complex signaling network involving MasR and ETR that protects against vascular injury, highlighting the potential for enhancing this pathway to improve vascular health.
View Article and Find Full Text PDF
Article Synopsis
  • Boys with hypospadias show abnormal artery responses, like hypercontractility and decreased ability to relax, and the influence of sex hormones on these issues is not fully understood.
  • The study aimed to investigate how sex steroids affect blood vessel behavior in healthy boys versus those with hypospadias using artery samples from surgeries.
  • Results indicated that in healthy boys, sex hormones cause increased vasoconstriction, whereas in boys with hypospadias, these hormones actually reduce vasoconstriction and assist in vasorelaxation, suggesting hormone effects may vary based on existing vascular conditions.*
View Article and Find Full Text PDF

Background: NOX4 activation has been implicated to have vasoprotective and blood pressure (BP)-lowering effects. Molecular mechanisms underlying this are unclear, but NOX4-induced regulation of the redox-sensitive Ca 2+ channel TRPM2 and effects on endothelial nitric oxide synthase (eNOS)-nitric oxide signalling may be important.

Method: Wild-type and LinA3, renin-expressing hypertensive mice, were crossed with NOX4 knockout mice.

View Article and Find Full Text PDF

Background: In post-coronavirus disease-19 (post-COVID-19) conditions (long COVID), systemic vascular dysfunction is implicated, but the mechanisms are uncertain, and the treatment is imprecise.

Methods And Results: Patients convalescing after hospitalization for COVID-19 and risk factor matched controls underwent multisystem phenotyping using blood biomarkers, cardiorenal and pulmonary imaging, and gluteal subcutaneous biopsy (NCT04403607). Small resistance arteries were isolated and examined using wire myography, histopathology, immunohistochemistry, and spatial transcriptomics.

View Article and Find Full Text PDF

Background Hypertension and vascular toxicity are major unwanted side effects of antiangiogenic drugs, such as vascular endothelial growth factor inhibitors (VEGFis), which are effective anticancer drugs but have unwanted side effects, including vascular toxicity and hypertension. Poly (ADP-ribose) polymerase (PARP) inhibitors, used to treat ovarian and other cancers, have also been associated with elevated blood pressure. However, when patients with cancer receive both olaparib, a PARP inhibitor, and VEGFi, the risk of blood pressure elevation is reduced.

View Article and Find Full Text PDF

Hyperaldosteronism causes cardiovascular disease as well as hypomagnesemia. Mechanisms are ill-defined but dysregulation of TRPM7, a Mg-permeable channel/α-kinase, may be important. We examined the role of TRPM7 in aldosterone-dependent cardiovascular and renal injury by studying aldosterone-salt treated TRPM7-deficient (TRPM7) mice.

View Article and Find Full Text PDF

Aims: Hypogonadism is associated with cardiovascular disease. However, the cardiovascular impact of hypogonadism during development is unknown. Using hypospadias as a surrogate of hypogonadism, we investigated whether hypospadias is associated with vascular dysfunction and is a risk factor for cardiovascular disease.

View Article and Find Full Text PDF

Obesity, an important risk factor for cardiovascular disease, promotes vascular oxidative stress. Considering that free testosterone levels remain within the reference range, especially in obese young men and that testosterone stimulates reactive oxygen species (ROS) generation, we sought to investigate whether testosterone interferes with obesity-associated oxidative stress and vascular dysfunction in male mice. We hypothesized that testosterone favors ROS accumulation and vascular dysfunction in high fat diet (HFD)-fed obese mice.

View Article and Find Full Text PDF

Osteogenic factors, such as osteoprotegerin (OPG), are protective against vascular calcification. However, OPG is also positively associated with cardiovascular damage, particularly in pulmonary hypertension, possibly through processes beyond effects on calcification. In the present study, we focused on calcification-independent vascular effects of OPG through activation of syndecan-1 and NADPH oxidases (Noxs) 1 and 4.

View Article and Find Full Text PDF

Aims: NOX-derived reactive oxygen species (ROS) are mediators of signalling pathways implicated in vascular smooth muscle cell (VSMC) dysfunction in hypertension. Among the numerous redox-sensitive kinases important in VSMC regulation is c-Src. However, mechanisms linking NOX/ROS to c-Src are unclear, especially in the context of oxidative stress in hypertension.

View Article and Find Full Text PDF

Objective: The mechanisms involved in NOX5 activation in atherosclerotic processes are not completely understood. The present study tested the hypothesis that lysophosphatidylcholine (LPC), a proatherogenic component of oxLDL, induces endothelial calcium influx, which drives NOX5-dependent reactive oxygen species (ROS) production, oxidative stress, and endothelial cell dysfunction.

Approach: Human aortic endothelial cells (HAEC) were stimulated with LPC (10-5 M, for different time points).

View Article and Find Full Text PDF

Angiotensin-II (Ang-II), a major target for treatment of cardiovascular disease, promotes cardiovascular dysfunction by directly modulating structure and function of vascular cells. Inflammasome components are expressed in the vasculature and are activated by specific stimuli. However, whether Ang-II activates the inflammasome in vascular cells or inflammasome activation contributes to Ang-II-induced vascular damage is still not fully elucidated.

View Article and Find Full Text PDF

A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension.

View Article and Find Full Text PDF

Notch3 mutations cause Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), which predisposes to stroke and dementia. CADASIL is characterised by vascular dysfunction and granular osmiophilic material (GOM) accumulation in cerebral small vessels. Systemic vessels may also be impacted by Notch3 mutations.

View Article and Find Full Text PDF

Objective: Transient receptor potential (TRP) melastatin 7 (TRPM7) cation channel, a dual-function ion channel/protein kinase, regulates vascular smooth muscle cell (VSMC) Mg2+ homeostasis and mitogenic signaling. Mechanisms regulating vascular growth effects of TRPM7 are unclear, but epidermal growth factor (EGF) may be important because it is a magnesiotropic hormone involved in cellular Mg2+ regulation and VSMC proliferation. Here we sought to determine whether TRPM7 is a downstream target of EGF in VSMCs and if EGF receptor (EGFR) through TRPM7 influences VSMC function.

View Article and Find Full Text PDF

The etiology of hypertension involves complex interactions among genetic, environmental, and pathophysiologic factors that influence many regulatory systems. Hypertension is characteristically associated with vascular dysfunction, cardiovascular remodelling, renal dysfunction, and stimulation of the sympathetic nervous system. Emerging evidence indicates that the immune system is also important and that activated immune cells migrate and accumulate in tissues promoting inflammation, fibrosis, and target-organ damage.

View Article and Find Full Text PDF

Increased generation of reactive oxygen species (ROS) and altered Ca handling cause vascular damage in hypertension. Mechanisms linking these systems are unclear, but TRPM2 (transient receptor potential melastatin 2) could be important because TRPM2 is a ROS sensor and a regulator of Ca and Na transport. We hypothesized that TRPM2 is a point of cross-talk between redox and Ca signaling in vascular smooth muscle cells (VSMC) and that in hypertension ROS mediated-TRPM2 activation increases [Ca] through processes involving NCX (Na/Ca exchanger).

View Article and Find Full Text PDF

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) leads to premature stroke and vascular dementia. Mechanism-specific therapies for this aggressive cerebral small vessel disease are lacking. CADASIL is caused by NOTCH3 mutations that influence vascular smooth muscle cell (VSMC) function through unknown processes.

View Article and Find Full Text PDF

Impaired redox balance contributes to the cardiovascular alterations of hypertension and activation of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway may counteract these alterations. While nitrite recycles back to NO and exerts antioxidant and antihypertensive effects, the mechanisms involved in these responses are not fully understood. We hypothesized that nitrite treatment of two-kidney, one-clip (2K1C) hypertensive rats activates the Nrf2 pathway, promotes the transcription of antioxidant genes, and improves the vascular redox imbalance and dysfunction in this model.

View Article and Find Full Text PDF

Chemerin and its G protein-coupled receptor [chemerin receptor 23 (ChemR23)] have been associated with endothelial dysfunction, inflammation, and insulin resistance. However, the role of chemerin on insulin signaling in the vasculature is still unknown. We aimed to determine whether chemerin reduces vascular insulin signaling and whether there is interplay between chemerin/ChemR23, insulin resistance, and vascular complications associated with type 2 diabetes (T2D).

View Article and Find Full Text PDF

Chemerin, acting through its receptor ChemR23, is an adipokine associated with inflammatory response, glucose and lipid metabolism and vascular function. Although this adipokine has been associated with the development and progression of kidney disease, it is not clear whether the chemerin/ChemR23 system plays a role in renal function in the context of diabetes. Therefore, we sought to determine whether ChemR23 receptor blockade prevents the development and/or progression of diabetic nephropathy and questioned the role of oxidative stress and Nrf2 in this process.

View Article and Find Full Text PDF

Background: NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive.

View Article and Find Full Text PDF