Publications by authors named "Rhett Cummings"

LPA (lysophosphatidic acid), a potent bioactive phospholipid, elicits diverse cellular responses through activation of the G-protein-coupled receptors LPA1-LPA4. LPA-mediated signalling is partially regulated by LPPs (lipid phosphate phosphatases; LPP-1, -2 and -3) that belong to the phosphatase superfamily. This study addresses the role of LPPs in regulating LPA-mediated cell signalling and IL-8 (interleukin-8) secretion in HBEpCs (human bronchial epithelial cells).

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA), a potent bioactive lipid, elicits many of its biological actions via the specific G-protein-coupled receptors LPA1, LPA2, LPA3, and LPA4. Recently, we have shown that LPA-induced transactivation of platelet-derived growth factor receptor-beta is regulated by phospholipase D2 in human bronchial epithelial cells (HBEpCs) (Wang, L., Cummings, R.

View Article and Find Full Text PDF

Lysophosphatidate (LPA) mediates multiple cellular responses via heterotrimeric G protein coupled LPA-1, LPA-2, and LPA-3 receptors. Many G protein-coupled receptors stimulate ERK following tyrosine phosphorylation of growth factor receptors; however, the mechanism(s) of transactivation of receptor tyrosine kinases are not well defined. Here, we provide evidence for the involvement of phospholipase D (PLD) in LPA-mediated transactivation of platelet-derived growth factor receptor-beta (PDGF-R beta).

View Article and Find Full Text PDF

Hyperoxia increases reactive oxygen species (ROS) production in vascular endothelium; however, the mechanisms involved in ROS generation are not well characterized. We determined the role and regulation of NAD(P)H oxidase in hyperoxia-induced ROS formation in human pulmonary artery endothelial cells (HPAECs). Exposure of HPAECs to hyperoxia for 1, 3, and 12 h increased the generation of superoxide anion, which was blocked by diphenyleneiodonium but not by rotenone or oxypurinol.

View Article and Find Full Text PDF

Phospholipase D (PLD), a phospholipid phosphohydrolase, catalyzes the hydrolysis of phosphatidylcholine and other membrane phospholipids to phosphatidic acid (PA) and choline. PLD, ubiquitous in mammals, is a critical enzyme in intracellular signal transduction. PA generated by agonist- or reactive oxygen species (ROS)-mediated activation of the PLDI and PLD2 isoforms can be subsequently converted to lysoPA (LPA) or diacylglycerol (DAG) by phospholipase A1/A2 or lipid phosphate phosphatases.

View Article and Find Full Text PDF

Sphingosine 1-phosphate (S1P), a metabolite of sphingomyelin degradation, stimulates interleukin-8 (IL-8) secretion in human bronchial epithelial (Beas-2B) cells. The molecular mechanisms regulating S1P-mediated IL-8 secretion are yet to be completely defined. Here we provide evidence that activation of phospholipases D1 and D2 (PLD1 and PLD2) by S1P regulates the phosphorylation of extracellular-signal-regulated kinase (ERK) and IL-8 secretion in Beas-2B cells.

View Article and Find Full Text PDF

Sphingosine 1-phosphate (S1P), a potent bioactive sphingolipid, has been implicated in many critical cellular events, including a regulatory role in the pathogenesis of airway inflammation. We investigated the participation of S1P as an inflammatory mediator by assessing interleukin-8 (IL-8) secretion and phospholipase D (PLD) activation in human bronchial epithelial cells (Beas-2B). S1P(1), S1P(3), S1P(4), S1P(5), and weak S1P(2) receptors were detected in Beas-2B and primary human bronchial epithelial cells.

View Article and Find Full Text PDF