Bioaccumulation is a key factor in understanding the potential ecotoxicity of substances. While there are well-developed models and methods to evaluate bioaccumulation of dissolved organic and inorganic substances, it is substantially more challenging to assess bioaccumulation of particulate contaminants such as engineered carbon nanomaterials (CNMs; carbon nanotubes (CNTs), graphene family nanomaterials (GFNs), and fullerenes) and nanoplastics. In this study, the methods used to evaluate bioaccumulation of different CNMs and nanoplastics are critically reviewed.
View Article and Find Full Text PDFEnviron Sci Nano
February 2017
As the production of carbon nanotubes (CNTs) expands, so might the potential for release into the environment. The possibility of bioaccumulation and toxicological effects has prompted research on their fate and potential ecological effects. For many organic chemicals, bioaccumulation properties are associated with lipid-water partitioning properties.
View Article and Find Full Text PDFRecent research on ocean health has found large predator abundance to be a key element of ocean condition. Fisheries can impact large predator abundance directly through targeted capture and indirectly through incidental capture of nontarget species or bycatch. However, measures of the global nature of bycatch are lacking for air-breathing megafauna.
View Article and Find Full Text PDFBiodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g.
View Article and Find Full Text PDF