Publications by authors named "Rhea D Chitalia"

We seek the development and evaluation of a fast, accurate, and consistent method for general-purpose segmentation, based on interactive machine learning (IML). To validate our method, we identified retrospective cohorts of 20 brain, 50 breast, and 50 lung cancer patients, as well as 20 spleen scans, with corresponding ground truth annotations. Utilizing very brief user training annotations and the adaptive geodesic distance transform, an ensemble of SVMs is trained, providing a patient-specific model applied to the whole image.

View Article and Find Full Text PDF

Purpose: Identifying imaging phenotypes and understanding their relationship with prognostic markers and patient outcomes can allow for a noninvasive assessment of cancer. The purpose of this study was to identify and validate intrinsic imaging phenotypes of breast cancer heterogeneity in preoperative breast dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) scans and evaluate their prognostic performance in predicting 10 years recurrence.

Experimental Design: Pretreatment DCE-MRI scans of 95 women with primary invasive breast cancer with at least 10 years of follow-up from a clinical trial at our institution (2002-2006) were retrospectively analyzed.

View Article and Find Full Text PDF

The degree of normal fibroglandular tissue that enhances on breast MRI, known as background parenchymal enhancement (BPE), was initially described as an incidental finding that could affect interpretation performance. While BPE is now established to be a physiologic phenomenon that is affected by both endogenous and exogenous hormone levels, evidence supporting the notion that BPE frequently masks breast cancers is limited. However, compelling data have emerged to suggest BPE is an independent marker of breast cancer risk and breast cancer treatment outcomes.

View Article and Find Full Text PDF

Breast cancer is a known heterogeneous disease. Current clinically utilized histopathologic biomarkers may undersample tumor heterogeneity, resulting in higher rates of misdiagnosis for breast cancer. MRI can provide a whole-tumor sampling of disease burden and is widely utilized in clinical care.

View Article and Find Full Text PDF